최근 GWAS(Genome-wide association study)로 인해 수십만 개의 SNP들이 사용 가능하게 되었다. 그러나 SNP 정보의 양이 방대하여 모든 SNP 조합을 검토하는 방식은 계산 비용이 클 뿐 아니라 오버피팅의 위험이 따른다. 본 논문에서는 필터링 기반 알고리즘인 SNPHarvester의 속도를 개선하고 평가함수를 상호정보량으로 대체하여 실험한다. 기존 SNPHarvester와 비교해 속도면에서 50%가 향상되었고 평가함수 면에서는 기존 SNPHarvester와 동일한 성능을 보였다.
본 논문에서는 template matching을 이용한 PMMVD(Pattern Matched Motion Vector Derivation)기술에 대해 움직임 추정 방식에 따라 복잡도를 분석한다. PMMVD 기술은 HEVC의 화면 간 예측 기술과는 다르게 움직임과 관련된 정보를 부호화하지 않으며, 복호화기에서 움직임 벡터를 추정하는 방식이다. 따라서 종래의 기술 대비 높은 효율이 발생하지만 복호화기의 복잡도는 급격히 증가하게 된다. 이러한 이유로 다양한 움직임 추정 방식에 따라 성능을 분석하여 최적의 조합을 찾는 것은 매우 중요한 이슈임을 알 수 있다. 이를 위하여 현재 JVET(Joint Video Exploration Team)에서 FVC(Future Video Coding)를 위해 발표한 참조 소프트웨이인 JEM 2.0(Joint Exploration Test Model 2)을 이용하여 실험을 수행하고 향후 연구 방향을 논의한다.
Considering a countermeasure against vibration along the existing line, in many cases, it may be the most efficient method to replace existing fasteners with high resilient fasteners because of the restriction of the construction of a new track type. There are many types of high resilient fasteners which are different in price and performance. Therefore it is important to choose the high resilient fastener which has best vibration-proof performance per price. In this study, a prediction method which can exactly evaluate the performance of a fastener in the reduction the ground borne noise in the existing line is presented, which is constructed based on the combination of the measurement and the simulation. A numerical example using the presented method is introduced to evaluate the vibration-proof performance for the solution of the vibration problem in the existing line.
본 연구에서는 의사결정나무와 Conditional Random Fields(CRFs)를 이용하여 한국어 어절 구문태그를 예측하는 시스템에 대해서 설명한다. 기계학습에서 자질의 선택은 작성자의 직관에 의해서 주로 이루어지는데 이는 작성자의 지식에 의존한다. 본 연구에서는 의사결정나무를 사용하여 보다 체계적으로 조합이 이루어지도록 하였다. 또한 오류 분석을 통하여 최적의 자질이 무엇인지를 파악하여 최고의 성능을 보이도록 하였다. 실험을 통하여 본 논문에서 제안한 방법이 성능향상에 도움이 된다는 것을 확인할 수 있어 앞으로 구문 분석에 많은 도움이 될 것이라고 확신한다.
발전 연료로서의 활용 가치가 높은 중잔유의 효과적인 활용을 위해 중잔유의 가스화 성능에 영향을 주는 주요 변수들인 산소 공급비, 증기 공급비 및 가스화기 온도를 변화시키면서 중잔유 가스화에 미치는 영향을 파악하였으며 가스화 성능을 예측하였다. 산소량은 0.5~2.0의 산소/연료비 범위에서 변화시켰고 증기량은 0.1~2.0의 증기/연료비에서 변화시켰으며 가스화기 온도는 600~200$0^{\circ}C$의 범위에서 변화시켰다. 대상 연료는 국내산 아스팔트이며 산소-증기, 산소-온도 및 증기-온도의 조합으로 동시 변화시킬 때의 가스화에 미치는 영향을 살펴보았다. 산소량이 증가할수록 CO와 H$_2$ 생성량은 증가한 후 감소하는 경향을 나타내었으며 증기량이 증가할수록 H$_2$ 생성량은 130$0^{\circ}C$부근까지 증가한 후 130$0^{\circ}C$ 이상에서는 서서히 감소하였으며, CO 생성량은 증가하는 경향을 나타내었다. 국내산 아스팔트의 경우 산소/연료비 0.92~1.01, 증기/연료비 0.18~0.49 및 가스화기 온도 1250~132$0^{\circ}C$의 영역에서 가스화 성능이 가장 좋은 것으로 나타났다.
이 연구에서는 완전 조립식 교량 하부구조의 비선형해석을 위한 전산플랫폼을 개발하였다. 완전 조립식 교량 하부구조의 비선형거동을 정확하게 파악하고 합리적이면서 경제적인 설계기준의 개발을 위한 자료를 제공하는데 그 목적이 있다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 사용된 부착 또는 비부착 텐던요소는 유한요소법에 근거하며 프리스트레스트 콘크리트 부재의 콘크리트와 텐던의 상호작용을 구현할 수 있다. 그리고 접합면요소는 세그먼트 접합부의 비탄성거동을 예측할 수 있다. 제안된 해석기법은 수치예제에 대하여 비선형거동을 비교적 정확하게 예측하였다.
우주용 고분자 재료의 기체방출 특성에 대한 측정 및 분석은 위성의 운용 시 방출된 분자에 의한 오염 거동을 예측하기 위한 전산 모사에 필요하다. 일반적으로 우주용 재료의 기체 방출량을 측정하는 방법으로는 TML(Total Mass Loss) 및 CVCM(Collected Volatile Condensible Material) 등이 규정되어있으나 이 방법들은 단지 측정 전과 후의 질량 차이만을 규정하고 있어서 시간에 따른 기체방출 양상을 분석하기 어렵다. 유량법(Throughput method)은 시료를 진공 용기에 넣고 일정한 배기속도로 배기하면서 측정한 압력 값으로부터 기체방출량을 얻는 방법이다. 유량법을 이용하면 시간에 따른 기체방출특성 뿐만 아니라 측정 전 후의 질량 차이도 측정 및 분석할 수 있다. 본 연구에서는 이 유량법을 이용하여 측정한 우주용 재료의 기체방출 특성을 분석하고, 이로부터 분자오염 거동을 예측하기 위한 전산 모사에 필요한 입력 데이터를 추출하였다. 이때 기체방출 데이터는 간단한 1차 탈착 곡선의 조합으로 근사하였다.
서비스 산업에 있어 기업 간의 경쟁이 날로 심화되어 가고 있는 가운데 효율적인 경영을 위해서는 시시각각으로 변하는 고객의 니즈를 파악하기 위해 그 어느 때 보다도 고객피드백이 필요한 시대이다. 최근 기업에서는 다양한 고객의 목소리가 담겨 있는 소셜 미디어상의 빅 데이터를 이용하여 고객의 피드백을 파악하려는 노력을 하고 있다. 따라서 모바일 스마트 혁명의 핵심 자원인 빅 데이터를 어떻게 분석, 활용 할 것인지 많은 기업들의 관심이 집중되고 있다. 본 연구에서는 이러한 소셜 빅 데이터를 분석하는 기술로서 최근 이슈를 감지하고 예측하는 방법을 제안하다. 이것은 기관이나 기업 등 분석대상과 관련된 소셜 데이터 자체를 분석하거나 그 외 관련 데이터와 연관 관계 분석 등 여러 가지 방법을 조합하여 부정적 이슈 등의 탐지가 가능하다.
비디오 영상으로부터 객체를 추적하는 문제에 있어서 폐색은 오늘날까지도 해결해야하는 문제 중 하나다. 폐색이란 영상 속 찾고자 하는 객체가 이전 프레임에서는 존재했지만 특정 프레임에서는 전경 혹은 다른 객체에 의해 가려져 모습이 보이지 않는 것을 의미한다. 폐색이 나타난 상황에서 해당 객체를 추적하기 위해서는 이전 프레임까지 추적된 정보를 바탕으로 영상에 다시 객체가 나타날 때까지 위치를 잘 예측해야 한다. 본 논문은 비디오 영상의 폐색 환경에 강인한 다중 객체 추적 알고리즘을 제시한다. 이를 위해 딥러닝 기반의 LSTM 구조를 활용하여 객체의 형태 정보를 학습하고 칼만 필터를 이용해 객체의 속도 정보를 학습한다. 두 정보를 조합하여 폐색이 발생하였을 때 객체의 형태와 위치를 예측하여 영상 속에 객체가 다시 등장하더라도 추적 성능을 최대화 한다.
지역 저수지들은 농업용수 공급의 중요한 수원공으로 가뭄과 같은 극단적 기후 조건을 대비하여 안정적인 저수율 관리가 필수적이다. 저수율 예측은 국지적 강우와 같은 지역적 기후 특성뿐만 아니라 작부시기를 포함하는 계절적 요인 등에 크게 영향을 받기 때문에 적절한 예측 모델을 선정하는 것만큼 입/출력 데이터 간 상관관계 파악이 무엇보다 중요하다. 이에 본 연구에서는 1991년부터 2022년까지의 전라북도 400여 개 저수지의 광범위한 다변량 데이터를 활용하여 각 저수지의 복잡한 수문학·기후학적 환경요인을 포괄적으로 반영한 저수율 예측 모델을 학습 및 검증하고, 각 입력 특성이 저수율 예측 성능에 미치는 영향력을 분석하고자 한다. 신경망 구조에 따른 저수율 예측 성능 개선이 아닌 다변량의 입력 데이터와 예측 성능 간의 상관관계에 초점을 맞추기 위하여 실험에 사용된 예측 모델로 합성곱신경망 또는 순환신경망과 같은 복잡한 형태가 아닌 완전연결계층, 배치정규화, 드롭아웃, 활성화 함수 등의 조합으로 구성된 기본적인 순방향 신경망을 채택하였다. 추가적으로 대부분의 기존 연구에서는 하루 단위의 단기 예측 성능만을 제시하고 있으며 이러한 단기 예측 방식은 10일, 한 달 단위 등 중장기적 예측이 필요한 실무환경에 적합하지 않기 때문에, 본 연구에서는 하루 단위 예측값을 다음 입력으로 사용하는 재귀적 방식을 통해 최대 한 달 뒤 저수율 예측 성능을 측정하였다. 실험을 통해 예측 기간에 따른 성능 변화 양상을 파악하였으며, Ablation study를 바탕으로 예측 모델의 각 입력 특성이 전체 성능에 끼치는 영향을 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.