• Title/Summary/Keyword: 예측 제어

Search Result 2,173, Processing Time 0.034 seconds

Fuzzy logic for a position prediction and manipulator control (퍼지로직을 이용한 위치 예측과 매니퓰레이터의 제어)

  • 이승환;임종태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.152-155
    • /
    • 1991
  • A solution to the problem of robot manipulator tracking of a smoothly moving object is given. It is shown that fuzzy prediction rule, fuzzy control can compensate the adverse effects of noise, time delay, unknown object trajectory, and robot modeling uncertainty. Simulations show that the fuzzy logic control results in acceptable precision,

  • PDF

Optimal control of large scale distributed packet switching system via interaction prediction method (상호작용 예측 방법에 의한 대형 분산 패킷 교환망의 최적제어)

  • 장영민;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.547-549
    • /
    • 1986
  • This paper deals with large scale distributed packet switching system which is modeled by state space form and optimizing routing algorithms and buffer size via a hierachical system optimization method, the interaction prediction method.

  • PDF

Hierarchical optimisation for large scale discrete-time systems using extended interaction prediction method (확장된 상호작용 예측방법을 이용한 대규모 이산시간 시스템의 계층적 최적제어)

  • 정희태;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.223-227
    • /
    • 1987
  • This paper presents the extended interaction prediction method for large scale discrete-time systems with interconnected state and control. Feedback gain is obtained from decentralized calculation without solving Riccati equation. Hence, Computer storage and calculation time is reduced.

  • PDF

Feedback Control on Urban Air Pollution (도시공기오염에 대한 귀환제어)

  • 한만춘;정태원
    • 전기의세계
    • /
    • v.20 no.4
    • /
    • pp.44-48
    • /
    • 1971
  • 우리주변에서 규칙적으로 내뿜어지는 매연을 우리들의 건강을 위해서 예측하고 제어하는데에는 여러방법이 있다. 이방법들은 몇개의 단계로 나뉘어져서 공기의 질을 제어하기위한 효과적인 계통을 이룬다. 본 고에서는 공기감시계통, 입지선택, 효과적인 초기경고계통에 대해 알아보고자 한다.

  • PDF

Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse (인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정)

  • Kim, Sang Yeob;Park, Kyoung Sub;Ryu, Keun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.129-134
    • /
    • 2018
  • Recently, the artificial neural network (ANN) model is a promising technique in the prediction, numerical control, robot control and pattern recognition. We predicted the outside temperature of greenhouse using ANN and utilized the model in greenhouse control. The performance of ANN model was evaluated and compared with multiple regression model(MRM) and support vector machine (SVM) model. The 10-fold cross validation was used as the evaluation method. In order to improve the prediction performance, the data reduction was performed by correlation analysis and new factor were extracted from measured data to improve the reliability of training data. The backpropagation algorithm was used for constructing ANN, multiple regression model was constructed by M5 method. And SVM model was constructed by epsilon-SVM method. As the result showed that the RMSE (Root Mean Squared Error) value of ANN, MRM and SVM were 0.9256, 1.8503 and 7.5521 respectively. In addition, by applying the prediction model to greenhouse heating load calculation, it can increase the income by reducing the energy cost in the greenhouse. The heating load of the experimented greenhouse was 3326.4kcal/h and the fuel consumption was estimated to be 453.8L as the total heating time is $10000^{\circ}C/h$. Therefore, data mining technology of ANN can be applied to various agricultural fields such as precise greenhouse control, cultivation techniques, and harvest prediction, thereby contributing to the development of smart agriculture.

An usefulness study on estimation and control method of EGR ratio using intake manifold pressure in an gasoline engine (가솔린엔진에서 흡기관 압력을 이용한 EGR율의 추정 및 제어 방법에 관한 유용성 연구)

  • Park, Hyeong-Seon;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.806-813
    • /
    • 2014
  • The EGR system being reburned the part of the exhaust gas through intake system indicates more favorable emission characteristics to reduce NOx in a gasoline engine, but the case of inappropriate exhaust gas quantity induced from engine is fallen engine power caused by unstable combustion. In this study, we examined a method to predict EGR ratio according to various engine operation condition based by intake manifold pressure and confirmed such a prediction data through an experimental method. And after having constituted feedback EGR control algorithm in a base with such a prediction data, we acquired qualitatively similar results by having compared data provided through an EGR feedback control experiment with the data which calculated quantity of residual gas for the engine operation condition. Therefore, the applied algorithm and the system for feedback EGR control showed feasibility applied to real electronic control EGR technology.

Efficient Grid-Independent ESS Control System by Prediction of Energy Production Consumption (에너지 생산량 소비량 예측을 통한 효율적인 계통 독립형 ESS 제어 시스템)

  • Joo, Jong-Yul;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.155-160
    • /
    • 2019
  • In this paper, we propose an efficient grid-independent ESS control system through the control of renewable energy and agricultural ICT by utilizing the prediction of energy production and consumption. The proposed system is an integrated management system that can perform maintenance and monitoring by visualizing the accurate phase and data of power system. It can automatically cope, collect, process, and control the data. Also, it can analyze the power generation of solar power generation, consumption pattern of installed facilities, and operation trend of facilities. Further, it can predict the consumption of energy production and present the optimal energy management method by using the OpenAPI of the Korea Meteorological Administration, thereby reducing unnecessary energy consumption and operating cost.

Energy-Efficient Operation Simulation of Factory HVAC System based on Machine Learning (머신러닝 기반 공장 HVAC 시스템의 에너지 효율화 운영 시뮬레이션)

  • Seok-Ju Lee;Van Quan Dao
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.2
    • /
    • pp.47-54
    • /
    • 2024
  • The global decrease in traditional energy resources has prompted increasing energy demand, necessitating efforts to replace and optimize energy sources. This study focuses on enhancing energy efficiency in manufacturing plants, known for their high energy consumption. Through simulations and analyses, the study proposes a temperature-based control system for HVAC (Heating, Ventilating, and Air Conditioning) operations, utilizing machine learning algorithms to predict and optimize factory temperatures. The results indicate that this approach, particularly the prediction-based free cooling algorithm, can achieve over 10% energy savings compared to existing systems. This paper presents that implementing an efficient HVAC control system can significantly reduce overall factory energy consumption, with plans to apply it to real factories in the future.

Inflow Forecasting Using Fuzzy-Grey Model (Fuzzy-Grey 모형을 이용한 유입량 예측)

  • Kim, Yong;Yi, Choong Sung;Kim, Hung Soo;Shim, Myung Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.759-764
    • /
    • 2004
  • 본 연구는 Deng(1989)이 제시한 Grey 모형을 이용하여 성진강댐의 월유입량을 예측하였고 그 방법을 제시하였다. Grey 모형은 시계열모형이나 다른 모형에 비해 비교적 적은 수의 자료를 이용하고, 간단할 수식으로 구성되어 있는 장점이 있으나, 적은 수의 자료로 인해 입력자료가 가지는 증감의 경향(trend)으로 오차가 발생하기 쉽다. 그러므로 예측오차를 극복하기 위해서 Fuzzy 시스템을 결합한 Fuzzy-Grey 모형을 구성하였고 Fuzzy 시스템에 필요한 매개변수를 추정하기 위해 최적화기법인 유전자 알고리즘(GA; Genetic Algorithm)을 이용하였다. Grey 모형과 결합된 Fuzzy 시스템은 현재의 입력자료가 가지는 패턴과 가장 유사한 패턴의 과거자료를 이용하여 현재의 입력자료의 예측오차를 추론해내는 기능을 가진다. 오차를 추론하기 위해서 과거 월유입량 자료중 현재 입력 자료와 유사한 패턴을 Grey 상관도를 이용하여 검색하고, 보다 높은 유사성을 가지는 패턴을 선별하고자 노름(norm)을 사용하였고, 유전자 알고리즘의 탐색공간을 제한하였다. 이렇게 구성한 Fuzzy-Grey 모형을 이용하여 전국적인 가뭄년도였던 1992년, 1988년, 2001년에 대해 섬진강댐의 월유입량을 예측하였다. 오차는 1982년, 2001년, 1988년 순으로 비슷한 크기의 오차가 발생하였는데 결과를 분석하여 보면, 급격한 월유입량의 변화가 있었던 경우에 오차가 크게 발생하였으나 가뭄년도에 대해 월유입량의 불확실성이 큼에도 불구하고 비교적 월유입량의 추세를 잘 예측한 것으로 판단된다. 본 연구에서 적용한 Fuzzy-Grey 모형은 적은 수의 자료를 이용하여 예측하고 예측결과를 다시 입력자료로 사용하는 업데이트 방식을 사용하기 때문에 예측결과의 오차가 완전하게 보정되지 않으면 다음 결과에 역시 오차를 주게 되어 오차보정이 상당히 중요하다는 것을 알 수 있었다. 오차를 보다 효과적으로 보정하기 위해서는 퍼지제어에 사용되는 퍼지규칙의 수를 늘리고, 유입량에 직접적인 영향을 주는 강우량과 연계한 2변수의 Fuzzy-Grey 모형을 이용한다면 보다 정확한 유입량 예측이 가능할 것으로 사료된다.

  • PDF

Estimation of Propellant Consumption during Thrust Control of GOx/PC Hybrid Rocket (GOx/PC 하이브리드 로켓의 추력제어 환경에서 후퇴거리 예측)

  • Kang, Wan-Kyu;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.526-529
    • /
    • 2009
  • In this study, we analyze the characteristic of burning classified by a propellant according to a flux of an oxidizer to analyze propellant regression distance in accordance with a thrust control and burning time of hybrid rocket using hybrid combustor of Lab-Scale. To control a flux of an oxidizer, we design flow control system to regulate the mount of opening and shutting of a needle valve by a driving of stepping motor by a combination the needle valve with stepping motor. We derive the relationships between mass flow rate and regression rate according to a propellant through the oxidizer flux change. While doing the thrust control, we estimate regression distance through the oxidizer flux in accordance with thrust and confirm the creditability through the actual thrust control burning experimentation.

  • PDF