• 제목/요약/키워드: 예측 성능

검색결과 6,657건 처리시간 0.036초

문맥적응적 화면내 예측 모델 학습 및 부호화 성능분석 (Context-Adaptive Intra Prediction Model Training and Its Coding Performance Analysis)

  • 문기화;박도현;김재곤
    • 방송공학회논문지
    • /
    • 제27권3호
    • /
    • pp.332-340
    • /
    • 2022
  • 최근 딥러닝을 적용하는 비디오 압축에 대한 연구가 활발히 진행되고 있다. 특히, 화면내 예측 부호화의 성능 한계를 극복할 수 있는 방안으로 딥러닝 기반의 화면내 예측 부호화 기술이 연구되고 있다. 본 논문은 신경망 기반 문맥적응적 화면내 예측 모델의 학습기법과 그 부호화 성능분석을 제시한다. 즉, 본 논문에서는 주변 참조샘플의 문맥정보를 입력하여 현재블록을 예측하는 기존의 합성곱 신경망(CNN: Convolutional Neural network) 기반의 화면내 예측 모델을 학습한다. 학습된 화면내 예측 모델을 HEVC(High Efficiency Video Coding)의 참조 소프트웨어인 HM16.19에 추가적인 화면내 예측모드로 구현하고 그 부호화 성능을 분석하였다. 실험결과 학습한 예측 모델은 HEVC 대비 AI(All Intra) 모드에서 0.28% BD-rate 부호화 성능 향상을 보였다. 또한 비디오 부호화 블록분할 구조를 고려하여 학습한 경우의 성능도 확인하였다.

머신러닝을 활용한 팔당호 유해남조 세포수 예측 (Prediction of harmful algal cell density in Lake Paldang using machine learning)

  • 변서현;이한규;김진휘;신재기;박용은
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.234-234
    • /
    • 2023
  • 유해 남조 대발생(Harmful Algal blooms, HABs)이 담수호에 발생하면 마이크로시스틴과 같은 독성물질과 맛·냄새 물질을 생성하여 상수원이용과 친수활동을 방해한다. 그래서 유해 남조 대발생 전 유해남조 세포수를 예측하여 선제적 대응하는 것은 중요하다. 따라서 본 연구는 머신러닝기반 Random Forest(RF)를 활용하여 팔당댐 앞의 유해남조 세포수를 예측하는 모델을 개발하고 성능을 평가하고자 한다. 모델 구축을 위해 2012년 4월부터 2021년 12월까지의 팔당호(삼봉리, 경안천) 및 남북한강(의암댐~이포보)권역의 조류, 수질, 수리/수문, 기상 자료를 수집하여 입력 및 출력 자료로 이용하였다. 수집된 데이터에는 다양한 입력변수들이 있어 남조 세포수 예측 성능 비교를 위한 전체 26개 변수 적용과 통계학적으로 상관관계가 높은 12개 변수 적용을 통해 모델을 구축하였다. 입력, 출력 자료로 이용한 유해남조 세포수는 로그변환된 값으로 사용하였으며 일반적인 조류 시료 채취기간이 7일이므로 7일 후를 예측하기 위한 모델을 구축하였다. 구축한 모델의 성능은 실측데이터와 예측데이터의 R2로 산출하여 평가하였다. 전체 26개 입력변수로 모델 구축 후 학습 및 검증 수행 결과 R2의 학습 0.803, 검증 0.729로 나타났고, 유해남조 세포수와 유의미한 상관관계를 보이는 12개 입력변수로 모델 구축 후 학습 및 검증 수행 R2은 학습 0.784, 검증 0.731로 나타났다. 두 모델의 성능을 살펴본 결과 입력변수 개수의 변화에 따른 성능차이는 크지 않은 것으로 나타났으며, 남조세포수 예측을 위한 모델로서 활용가능함을 알 수 있었다. 향후 연구에서는 Random Forest 외 다른 기계학습 모델들과 딥러닝 모델을 통해 남조세포수 예측 성능이 높은 모델을 구축해볼 필요성이 있다.

  • PDF

수직이착륙/고속순항 무인기 초기개념설계를 위한 성능예측 프로그램 개발 (The Development of Performance Analysis Code for Pre-Conceptual Design of VTOL UAV)

  • 정원형;이경태;김정엽
    • 한국항공우주학회지
    • /
    • 제32권5호
    • /
    • pp.1-9
    • /
    • 2004
  • 수직이착륙과 고속수평비행이 기능한 스마트 무인기 개발의 일환으로 초기개념설계용 성능예측 프로그램을 작성하였다. 스마트 무인기가 요구하는 설계조건을 기반으로 각 임무 단계 수행과정에서의 연료소모중량을 반복계산하여 전체 중량을 예측하고, 동시에 무인기의 주요형상변수, 추진성능, 수직이착륙성능, 수평비행성능 등의 계산을 통해 성능예측 및 설계요구조건 만족여부 판단, 경향성 분석을 수행할 수 있다. 동 프로그램은 수직이착륙 무인항공기 비행체의 초기개념설계단계에서 비행체의 경향성 분석, 비행성능 예측 및 설계 요구조건 검증 등을 손쉽고 간편하게 수행 할 수 있는 도구도서 사용할 수 있다.

조건부 합성기법을 이용한 AMSR-E 토양수분과 지상관측 토양수분의 공간보간 성능 평가 : 한반도 전역에 대하여 (Performance of conditional merging spatial interpolation technique combining AMSR-E soil moisture and In-situ soil moisture data over the Korean peninsula)

  • 이재현;최민하;조은상;김동균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2015
  • 미계측 지역에서의 토양수분을 예측하기 위한 공간보간 기법으로 크리깅 방법과 조건부합성기법을 한반도에 적용하여 비교 분석하였다. 연구에 사용된 토양수분 자료는 2011년 5월 1일부터 2011년 9월 30일까지이며, Advanced Microwave Scanning Radiometer-Earth observing system(AMSR-E)의 위성관측 자료와 농촌진흥청에서 제공하는 지상관측 자료를 이용하였다. leave-one-out 교차검증 방법을 사용하여 공간보간 성능을 평가했고, 관측지점별 시계열 분석 결과 총 24개 관측지점 중 14개 관측지점에서 CM의 결과가 우세한 것으로 나타났다. 특정 관측일에 대해 예측 성능 분석 결과 총 113일 중 68일에 대해 CM의 결과가 우세한 것으로 나타났다. 각 관측지점의 예측 성능을 공간적으로 분석하기 위하여 관측소별 예측 성능 지도를 작성하여 공간적인 특성을 분석한 결과 관측소가 밀집되어있는 한반도의 서쪽지역에서 예측이 성능이 좋게 나왔다. 이러한 결과는 위성으로부터 관측된 토양수분 자료의 공간적인 특성을 고려하여 지상관측 자료와 합성하는 것이 토양수분의 공간적인 보간성능을 향상 시킬 수 있다는 것을 의미한다.

  • PDF

예측정확도 향상 전략을 통한 예측기반 병렬 게이트수준 타이밍 시뮬레이션의 성능 개선 (Performance Improvement of Prediction-Based Parallel Gate-Level Timing Simulation Using Prediction Accuracy Enhancement Strategy)

  • 양세양
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권12호
    • /
    • pp.439-446
    • /
    • 2016
  • 본 논문에서는 예측기반 병렬 이벤트구동 게이트수준 타이밍 시뮬레이션의 성능 개선을 위한 효율적인 예측정확도 향상 전략을 제안한다. 제안된 기법은 병렬 이벤트구동 로컬시뮬레이션들의 입력값과 출력값에 대한 예측을 이중으로 예측할 뿐만 아니라, 특별한 상황에서는 동적으로 예측할 수 있게 한다. 이중 예측은 첫번째 예측이 틀린 경우에 두번째 정적 예측 데이터로써 새로운 예측을 시도하게 되며, 동적 예측은 실제의 병렬 시뮬레이션 실행 과정 도중에 동적으로 축적되어진 지금까지의 시뮬레이션 결과를 예측 데이터로 활용하는 것이다. 제안된 두가지의 예측정확도 향상 기법은 병렬 시뮬레이션의 성능 향상의 제약 요소인 동기 오버헤드 및 통신 오버헤드를 크게 감소시킨다. 이 두가지 중요한 예측정확도 향상 방법을 통하여 6개의 디자인들에 대한 예측기반 병렬 이벤트구동 게이트수준 타이밍 시뮬레이션이 기존 통상적 방식의 상용 병렬 멀티-코어 시뮬레이션에 비하여 약 5배의 시뮬레이션 성능이 향상됨을 확인할 수 있었다.

횡단면분석과 추세분석을 이용한 슈퍼컴퓨팅 성능수요 예측 (Supercomputing Performance Demand Forecasting Using Cross-sectional and Time Series Analysis)

  • 박만희
    • 기술혁신연구
    • /
    • 제23권2호
    • /
    • pp.33-54
    • /
    • 2015
  • 국가차원의 슈퍼컴퓨팅 성능수요 예측은 슈퍼컴퓨터를 활용하는 계산과학분야의 연구자나 연구개발 인프라를 구축 운영하고 있는 전문기관, 과학기술 인프라구축을 주도할 정부기관에 있어서 매우 중요한 정보이다. 본 연구는 그동안 진행되었던 슈퍼컴퓨터 성능관련 예측활동 분석을 통해 과학기술 역량에 영향을 미치는 요인들을 도출하고 이를 슈퍼컴퓨터 기술진보 추세에 적용한 복합 예측모형을 제안하였다. 횡단면분석에서는 슈퍼컴퓨팅 성능에 영향을 미칠 것으로 판단되는 GDP, GERD, 연구원수, SCI논문수를 고려한 다중회귀분석을 수행하였다. 그리고 횡단면분석 결과에 Top500 자료의 성능(Rmax)값을 이용한 시계열분석을 통해 도출된 기간별 기술진보율을 곱하여 슈퍼컴퓨터의 성능을 예측하였다. 제안된 예측모형을 바탕으로 세계 슈퍼컴퓨터 500위의 시계열자료를 이용하여 한국이 2016년에 보유해야 할 슈퍼컴퓨터 성능규모를 예측하였다. 횡단면분석과 기술진보율을 적용하여 2016년 한국의 슈퍼컴퓨팅 성능수요를 예측해본 결과 현재의 추세를 이용할 경우 15~30PF 정도, 목표 국가수준의 추세를 이용할 때 20~40PF 정도의 컴퓨팅 역량이 필요할 것으로 예측되었다. 이 결과는 단순 회귀분석을 적용한 결과인 9.6PF와 횡단면분석을 적용한 결과인 2.5PF와 큰 차이를 나타내었다.

GAN 및 물리과정 기반 모델 결합을 통한 Hybrid 강우예측모델 개발 (Development of hybrid precipitation nowcasting model by using conditional GAN-based model and WRF)

  • 최수연;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.100-100
    • /
    • 2023
  • 단기 강우 예측에는 주로 물리과정 기반 수치예보모델(NWPs, Numerical Prediction Models) 과 레이더 기반 확률론적 방법이 사용되어 왔으며, 최근에는 머신러닝을 이용한 레이더 기반 강우예측 모델이 단기 강우 예측에 뛰어난 성능을 보이는 것을 확인하여 관련 연구가 활발히 진행되고 있다. 하지만 머신러닝 기반 모델은 예측 선행시간 증가 시 성능이 크게 저하되며, 또한 대기의 물리적 과정을 고려하지 않는 Black-box 모델이라는 한계점이 존재한다. 본 연구에서는 이러한 한계를 극복하기 위해 머신러닝 기반 blending 기법을 통해 물리과정 기반 수치예보모델인 Weather Research and Forecasting (WRF)와 최신 머신러닝 기법 (cGAN, conditional Generative Adversarial Network) 기반 모델을 결합한 Hybrid 강우예측모델을 개발하고자 하였다. cGAN 기반 모델 개발을 위해 1시간 단위 1km 공간해상도의 레이더 반사도, WRF 모델로부터 산출된 기상 자료(온도, 풍속 등), 유역관련 정보(DEM, 토지피복 등)를 입력 자료로 사용하여 모델을 학습하였으며, 모델을 통해 물리 정보 및 머신러닝 기반 강우 예측을 생성하였다. 이렇게 생성된cGAN 기반 모델 결과와 WRF 예측 결과를 결합하는 머신러닝 기반 blending 기법을 통해Hybrid 강우예측 결과를 최종적으로 도출하였다. 본 연구에서는 Hybrid 강우예측 모델의 성능을 평가하기 위해 수도권 및 안동댐 유역에서 발생한 호우 사례를 기반으로 최대 선행시간 6시간까지 모델 예측 결과를 분석하였다. 이를 통해 물리과정 기반 모델과 머신러닝 기반 모델을 결합하는 Hybrid 기법을 적용하여 높은 정확도와 신뢰도를 가지는 고해상도 강수 예측 자료를 생성할 수 있음을 확인하였다.

  • PDF

병렬 디스크 시스템의 모델링 및 모의 실험 (Modeling and Simulation of a Parallel Disk System)

  • 백승훈;김경호;박규호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (3)
    • /
    • pp.33-35
    • /
    • 1998
  • 본 논문에서는 형식론적 모델링 및 모의 실험 방법을 사용하여 병렬 디스크의 성능 예측 및 영상 데이터용 비선형 편집기의 개발을 위한 여러 형태의구조에 대해서 모의 실험한 결과 및 성능에 영향을 미치는 요소들에 대해 다루고 있다. 컴퓨터가 발전하기 전에는 테이프를 이용한 선형 편집기를 사용하였으나. 컴퓨터가 발전하고 또한 입출력 장치의 성능이 향상되면서 RAID(Redundant Array of Inexpensive Disk)가 개발되었고, 이것을 이용한 비선형 편집기가 개발되었다. 병렬디스크는 비선형 편집기뿐만 아니라 VOD(Video On Demand)나 데이터 서버등 응용분야가 많고, 요구되는 성능에 따라서 다양한 구조의 병렬디스크가 사용된다. 매우 큰 대역폭이 요구되는 병렬디스크의 경우에는 다양한 버스와 버퍼를 사용한 복잡한 계층적 구조가 요구된다. 그러나 이렇게 복잡한 병렬디스크를 개발하기 에 적당한 개발 도구가 없어 필요한 성능에 꼭 맞는 시스템을 개발하기가 어렵다. 특히 디스크의 성능을 수학저으로 쉽게 구할 수 없다. 또한 시스템이 실물로 완성되기 전에는 디스크의 운영 알고리즘의 개발 및 파일 시스템의 개발이 쉽지 않다. 그래서 쉬운 소프트웨어 개발과 디스크의 성능을 쉽게 측정하기 위해서 객체 지향 성능 예측시스템(OOPPS :Objet Oriented Performance Prediction System)을 개발하였고, 이것을 이용하여 HDTV용 비선형 편집기의성능을 예측하고, 필요한 성능을 만족하는 구조를 선택하여 실물로 개발하였다.

  • PDF

지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상 (Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of groundwater level)

  • 이원진;이의훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.186-186
    • /
    • 2022
  • 강수 및 침투 등으로 발생하는 지하수위의 변동을 예측하는 것은 지하수 자원의 활용 및 관리에 필수적이다. 지하수위의 변동은 지하수 자원의 활용 및 관리뿐만이 아닌 홍수 발생과 지반의 응력상태 등에 직접적인 영향을 미치기 때문에 정확한 예측이 필요하다. 본 연구는 인공신경망 중 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용한 지하수위 예측성능 향상을 위해 MLP의 구조 중 Optimizer를 개량하였다. MLP는 입력자료와 출력자료간 최적의 상관관계(가중치 및 편향)를 찾는 Optimizer와 출력되는 값을 결정하는 활성화 함수의 연산을 반복하여 학습한다. 특히 Optimizer는 신경망의 출력값과 관측값의 오차가 최소가 되는 상관관계를 찾는 연산자로써 MLP의 학습 및 예측성능에 직접적인 영향을 미친다. 기존의 Optimizer는 경사하강법(Gradient Descent, GD)을 기반으로 하는 Optimizer를 사용했다. 하지만 기존의 Optimizer는 미분을 이용하여 상관관계를 찾기 때문에 지역탐색 위주로 진행되며 기존에 생성된 상관관계를 저장하는 구조가 없어 지역 최적해로 수렴할 가능성이 있다는 단점이 있다. 본 연구에서는 기존 Optimizer의 단점을 개선하기 위해 지역탐색과 전역탐색을 동시에 고려할 수 있으며 기존의 해를 저장하는 구조가 있는 메타휴리스틱 최적화 알고리즘을 이용하였다. 메타휴리스틱 최적화 알고리즘 중 구조가 간단한 화음탐색법(Harmony Search, HS)과 GD의 결합모형(HS-GD)을 MLP의 Optimizer로 사용하여 기존 Optimizer의 단점을 개선하였다. HS-GD를 이용한 MLP의 성능검토를 위해 이천시 지하수위 예측을 실시하였으며 예측 결과를 기존의 Optimizer를 이용한 MLP 및 HS를 이용한 MLP의 예측결과와 비교하였다.

  • PDF

ILP 프로세서에서 데이터 값 예측기의 성능 평가 (The Performance evaluation of Data Value Predictor in ILP Processor)

  • 박희룡;전병찬;이상정
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (3)
    • /
    • pp.21-23
    • /
    • 1998
  • 본 논문에서 ILP (Instruction Level Parallelism)의 성능향상을 위하여 데이터 값들을 미리 예측하여 병렬로 이슈(issue)하고 수행하는 기존의 데이터 값 예측기(data value predictor)를 비교 분석하여 각 예측기의 예측율을 측정하고, 2-단계 데이터 값 예측기(Two-Level Data Value Predictor)와 혼합형 데이터 값 예측기(Hydrid Data Value Predictor)에서 발생되는 aiasing 을 측정하기 위해 수정된 데이터 값 예측기를 사용하여 측정한 결과 aliasing은 50% 감소하였지만 예측율에는 영향을 미치지 못함과 데이터 값 예측기의 예측율을 측정한 결과 혼합형 데이터 값 예측기의 예측율이 2-단계 데이터 값 예측기와 스트라이드 데이터 값 예측기(Stride Data Value Predictor)에서 평균 5.7%, 최근 값 예측기(Last Data Value Predictor)보다는 평균 38%의 예측 정확도가 높음을 입증하였다.

  • PDF