• Title/Summary/Keyword: 예측 성능

Search Result 6,657, Processing Time 0.031 seconds

High-resolution Urban Flood Modeling using Cellular Automata-based WCA2D in the Oncheon-cheon Catchment in Busan, South Korea (셀룰러 오토마타 기반 WCA2D 모형을 이용한 부산 온천천 유역 고해상도 도시 침수 해석)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Noh, Seong Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.587-599
    • /
    • 2023
  • As climate change increasesthe frequency and risk of flooding in major cities around theworld, the importance ofsimulation technology that can quickly and accurately analyze high-resolution 2D flooding information in large-scale areasis emerging. The physically-based approaches based on the Shallow Water Equations (SWE) often requires huge computer resources hindering high-resolution flood prediction. This study investigated the theoretical background of Weighted Cellular Automata 2D (WCA2D), which simulates spatio-temporal changes offlooding using transition rules and weight-based system, and assessed feasibility to simulate pluvial flooding in the urbancatchment, theOncheon-cheon catchmentinBusan, SouthKorea.Inaddition,the computation performancewas compared by applying versions using OpenComputing Language (OpenCL) andOpenMulti-Processing (OpenMP) parallel computing techniques. Simulationresultsshowed that the maximuminundation depthmap by theWCA2Dmodel cansimilarly reproduce historical inundation maps. Also, it can precisely simulate spatio-temporal changes of flooding extent in the urban catchment with complex topographic characteristics. For computation efficiency, parallel computing schemes, theOpenCLandOpenMP, improved the computation by about 8~14 and 5~6 folds respectively, compared to the sequential computation.

Method of Biological Information Analysis Based-on Object Contextual (대상객체 맥락 기반 생체정보 분석방법)

  • Kim, Kyung-jun;Kim, Ju-yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.41-43
    • /
    • 2022
  • In order to prevent and block infectious diseases caused by the recent COVID-19 pandemic, non-contact biometric information acquisition and analysis technology is attracting attention. The invasive and attached biometric information acquisition method accurately has the advantage of measuring biometric information, but has a risk of increasing contagious diseases due to the close contact. To solve these problems, the non-contact method of extracting biometric information such as human fingerprints, faces, iris, veins, voice, and signatures with automated devices is increasing in various industries as data processing speed increases and recognition accuracy increases. However, although the accuracy of the non-contact biometric data acquisition technology is improved, the non-contact method is greatly influenced by the surrounding environment of the object to be measured, which is resulting in distortion of measurement information and poor accuracy. In this paper, we propose a context-based bio-signal modeling technique for the interpretation of personalized information (image, signal, etc.) for bio-information analysis. Context-based biometric information modeling techniques present a model that considers contextual and user information in biometric information measurement in order to improve performance. The proposed model analyzes signal information based on the feature probability distribution through context-based signal analysis that can maximize the predicted value probability.

  • PDF

Analysis of Crushing/Classification Process for Recovery of Black Mass from Li-ion Battery and Mathematical Modeling of Mixed Materials (폐배터리 블랙 매스(black mass) 회수를 위한 파쇄/분급 공정 분석 및 2종 혼합물의 수학적 분쇄 모델링)

  • Kwanho Kim;Hoon Lee
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.81-91
    • /
    • 2022
  • The use of lithium-ion batteries increases significantly with the rapid spread of electronic devices and electric vehicle and thereby an increase in the amount of waste batteries is expected in the near future. Therefore, studies are continuously being conducted to recover various resources of cathode active material (Ni, Co, Mn, Li) from waste battery. In order to recover the cathode active material, black mass is generally recovered from waste battery. The general process of recovering black mass is a waste battery collection - discharge - dismantling - crushing - classification process. This study focus on the crushing/classification process among the processes. Specifically, the particle size distribution of various samples at each crushing/classification step were evaluated, and the particle shape of each particle fraction was analyzed with a microscope and SEM (Scanning Electron Microscopy)-EDS(Energy Dispersive Spectrometer). As a result, among the black mass particle, fine particle less than 74 ㎛ was the mixture of cathode and anode active material which are properly liberated from the current metals. However, coarse particle larger than 100 ㎛ was present in a form in which the current metal and active material were combined. In addition, this study developed a PBM(Population Balance Model) system that can simulate two-species mixture sample with two different crushing properties. Using developed model, the breakage parameters of two species was derived and predictive performance of breakage distribution was verified.

The Development of Tidal Power System Can be Installed in Existing Dykes - The Open Channel Experimental Verification (기존 방조제에 설치 가능한 조력발전 장치 개발 - 개수로 현장실험 검증)

  • HyukJin Choi;Dong-Hui Ko;Nam-Sun Oh;Shin Taek Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • As problems such as difficulties in securing stable energy resources and global warming due to the emission of greenhouse gases due to the use of fossil fuels have emerged, interest in the development of renewable energy is increasing. Since the tidal phenomenon has a regularity that occurs regularly with a certain period, it is possible to predict accurately in advance, which has a advantage in terms of energy recovery. Therefore, various methods have been devised to utilize the tide as an energy source. Tidal power using barrages is a representative method that is widely operated, but the promotion of tidal power generation projects is being delayed or stopped due to the decrease in the level of water in the tidal basin, changes in water quality and in the ecosystem. In this study, a field experiment was conducted to develop and verify the performance of a tidal power device applicable to sea areas where dykes are already installed. As a result of carrying out four cases of experiments using two water tanks, pipe lines, open channels, weirs, and water turbine and generator, the possibility of developing a power generation system capable of 10 kW output or more and 60% efficiency or more was confirmed. These research results can be used for small-scale tidal power by utilizing the existing dykes.

Preprocessing Technique for Malicious Comments Detection Considering the Form of Comments Used in the Online Community (온라인 커뮤니티에서 사용되는 댓글의 형태를 고려한 악플 탐지를 위한 전처리 기법)

  • Kim Hae Soo;Kim Mi Hui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.103-110
    • /
    • 2023
  • With the spread of the Internet, anonymous communities emerged along with the activation of communities for communication between people, and many users are doing harm to others, such as posting aggressive posts and leaving comments using anonymity. In the past, administrators directly checked posts and comments, then deleted and blocked them, but as the number of community users increased, they reached a level that managers could not continue to monitor. Initially, word filtering techniques were used to prevent malicious writing from being posted in a form that could not post or comment if a specific word was included, but they avoided filtering in a bypassed form, such as using similar words. As a way to solve this problem, deep learning was used to monitor posts posted by users in real-time, but recently, the community uses words that can only be understood by the community or from a human perspective, not from a general Korean word. There are various types and forms of characters, making it difficult to learn everything in the artificial intelligence model. Therefore, in this paper, we proposes a preprocessing technique in which each character of a sentence is imaged using a CNN model that learns the consonants, vowel and spacing images of Korean word and converts characters that can only be understood from a human perspective into characters predicted by the CNN model. As a result of the experiment, it was confirmed that the performance of the LSTM, BiLSTM and CNN-BiLSTM models increased by 3.2%, 3.3%, and 4.88%, respectively, through the proposed preprocessing technique.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 설계를 위한 실용적 해석방법에 관한 연구)

  • Lee, Seung-Hoon;Park, Young-Ho;Song, Myung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.83-94
    • /
    • 2007
  • Piled raft foundations have been highlighted as an economical design concept of pile foundations in recent years. However, piled raft foundations have not been widely used in Korea due to the difficulty in estimating the complex interaction effects among rafts, piles and soils. The authors developed an effective numerical program to analyze the behavior of piled raft foundations for practical design purposes and presented it briefly in this paper. The developed numerical program simulates the raft as a flexible plate consisting of finite elements with eight nodes and the raft is supported by a series of elastic springs representing subsoils and piles. This study imported another model to simulate pile groups considering non-linear behavior and interaction effects. The apparent stiffnesses of the soils and piles were estimated by iterative calculations to satisfy the compatibility between those two components and the behavior of piled raft foundations can be predicted using these stiffnesses. For the verification of the program, the analysis results about some example problems were compared with those of rigorous three dimensional finite element analysis and other approximate analysis methods. It was found that the program can analyze non-linear behaviors and interaction effects efficiently in multi-layered soils and has sufficient capabilities for application to practical analysis and design of piled raft foundations.

Trace-based Interpolation Using Machine Learning for Irregularly Missing Seismic Data (불규칙한 빠짐을 포함한 탄성파 탐사 자료의 머신러닝을 이용한 트레이스 기반 내삽)

  • Zeu Yeeh;Jiho Park;Soon Jee Seol;Daeung Yoon;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.62-76
    • /
    • 2023
  • Recently, machine learning (ML) techniques have been actively applied for seismic trace interpolation. However, because most research is based on training-inference strategies that treat missing trace gather data as a 2D image with a blank area, a sufficient number of fully sampled data are required for training. This study proposes trace interpolation using ML, which uses only irregularly sampled field data, both in training and inference, by modifying the training-inference strategies of trace-based interpolation techniques. In this study, we describe a method for constructing networks that vary depending on the maximum number of consecutive gaps in seismic field data and the training method. To verify the applicability of the proposed method to field data, we applied our method to time-migrated seismic data acquired from the Vincent oilfield in the Exmouth Sub-basin area of Western Australia and compared the results with those of the conventional trace interpolation method. Both methods showed high interpolation performance, as confirmed by quantitative indicators, and the interpolation performance was uniformly good at all frequencies.

Structural Behavior of Rib Reinforced Mg-Si Aluminum Alloy lighting Pole (리브보강 Al-Mg-Si계 가로등 등주의 구조적 거동)

  • Nam, Jeong-Hun;Joo, Hyung-Joong;Kim, Young-Ho;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.8-14
    • /
    • 2008
  • Lighting system of road is an essential structure used for the safety of pedestrians and vehicles. Most of the lighting pole is made with steel which is vulnerable under corrosive environment. To overcome such corrosion problems, stainless steel and iron steel are used, but they are usually manufactured by hand which is not efficient. Due to their high strength and stiffness, when there is car collision with the lighting pole structure the safety of driver may not be ensured. Hence, the development of new-type lighting pole system which is easy to adjust the right on the road, lengthen the service life, and reduce the maintenance, is necessary. Lighting pole made with aluminum alloy is high in strength per unit weight, is strong against corrosive environment, and is easy to construct due to flexibility and right weight. But, because the strength and stiffness of the material is lower than that of steel, the structural safety and serviceability of the system can be a problem. To mitigate the structural problem associated with conventional lighting pole system, experimental investigation is conducted on the conventional lighting pole and rib reinforced aluminum alloy lighting pole, respectively. By comparison of results, it was found that the rib reinforced Mg-Si aluminum alloy lighting pole is efficiently applicable to the lighting pole system of road.

COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech (품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지)

  • Jihyeok Kim;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.267-283
    • /
    • 2023
  • The COVID-19 pandemic, which began in December 2019 and continues to this day, has left the public needing information to help them cope with the pandemic. However, COVID-19-related fake news on social media seriously threatens the public's health. In particular, if fake news related to COVID-19 is massively spread with similar content, the time required for verification to determine whether it is genuine or fake will be prolonged, posing a severe threat to our society. In response, academics have been actively researching intelligent models that can quickly detect COVID-19-related fake news. Still, the data used in most of the existing studies are in English, and studies on Korean fake news detection are scarce. In this study, we collect data on COVID-19-related fake news written in Korean that is spread on social media and propose an intelligent fake news detection model using it. The proposed model utilizes the frequency information of parts of speech, one of the linguistic characteristics, to improve the prediction performance of the fake news detection model based on Doc2Vec, a document embedding technique mainly used in prior studies. The empirical analysis shows that the proposed model can more accurately identify Korean COVID-19-related fake news by increasing the recall and F1 score compared to the comparison model.

Application of Self-Organizing Map for the Analysis of Rainfall-Runoff Characteristics (강우-유출특성 분석을 위한 자기조직화방법의 적용)

  • Kim, Yong Gu;Jin, Young Hoon;Park, Sung Chun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.61-67
    • /
    • 2006
  • Various methods have been applied for the research to model the relationship between rainfall-runoff, which shows a strong nonlinearity. In particular, most researches to model the relationship between rainfall-runoff using artificial neural networks have used back propagation algorithm (BPA), Levenberg Marquardt (LV) and radial basis function (RBF). and They have been proved to be superior in representing the relationship between input and output showing strong nonlinearity and to be highly adaptable to rapid or significant changes in data. The theory of artificial neural networks is utilized not only for prediction but also for classifying the patterns of data and analyzing the characteristics of the patterns. Thus, the present study applied self?organizing map (SOM) based on Kohonen's network theory in order to classify the patterns of rainfall-runoff process and analyze the patterns. The results from the method proposed in the present study revealed that the method could classify the patterns of rainfall in consideration of irregular changes of temporal and spatial distribution of rainfall. In addition, according to the results from the analysis the patterns between rainfall-runoff, seven patterns of rainfall-runoff relationship with strong nonlinearity were identified by SOM.