• 제목/요약/키워드: 예측 성능

검색결과 6,657건 처리시간 0.035초

고성능 내장형 마이크로프로세서의 분기 예측기 구현 및 성능 대비 비용 분석 (Implementation of a Branch Predictor and Its Cost Per Performance Analysis for a High Performance Embedded Microprocessor)

  • 신상훈;최린
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.202-204
    • /
    • 2003
  • EISC ISA를 기반으로 한 64 비트 고성능 내장형 마이크로프로세서 AE64000의 효과적인 성능 향상을 위해서 비용 대비 성능 향상이 우수한 분기 예측 기법을 도입하여 AE64000 파이프라인에 적합한 분기 예측기를 추가로 설계하고 SPEClnt 벤치마크 및 타 내장형 벤치마크의 성능 분석 시뮬레이션을 통해 최적의 분기 예측기의 구조를 결정하였다. AE64000에서 LERI 명령 처리를 위해 AE64000 파이프라인에 추가된 독특한 IFU에 의하여 복잡성을 갖지만, IF 단계의 PC 대신에 IFU 단계의 PrePC를 이용하여 분기 명령을 명령어 prefetch 단계에서 예측함으로써, 올바른 분기 예측시 분기로 인한 손실을 제거할 수 있다. 결과적으로 최종 선정된 최적의 분기 예측기는 Verilog로 구현하여 AE64000 프로세서 코어 모델과 통합 합성하였고 아울러 추가되는 면적과 최종 목표 클럭에 동작하기 위한 타이밍 분석을 통해 최종 생산에 적합하도록 설계된 분기 예측기의 기능 및 타이밍 검증을 수행하였다. 최종 구현된 분기 예측기는 프로세서 칩 전체의 1% 미만의 비용으로 최고 12%의 성능 향상을 달성하여 성능 대비 면적의 효율성에서 높은 결과를 보였다.

  • PDF

가스터빈 엔진 천이 성능 시험에 의한 정상상태 성능 예측

  • 양인영;전용민;김춘택;양수석
    • 항공우주기술
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 2003
  • 항공기용 가스터빈엔진에 대한 경제적인 시험 기법 개발을 위해 천이상태 성능 시험 결과로부터 정상상태 성능을 예측할 수 있는 방안을 모색했다. 천이상태 성능과 정상상태 성능이 서로 달라지는 현상의 원인을 동역학적 천이 효과, 열적 천이 효과, 공기역학적 천이 효과로 구분하고, 각각을 모델링해서 엔진의 천이상태 성능을 통해 정상상태 성능을 계산하는 보정 인자를 정량화했다. 먼저 천이상태 성능시험 시 나타나는 엔진 입ㆍ출구의 온도 변화가 엔진 성능에 미치는 영향을 보정했고, 그 후 도입된 보정 인자를 사용해 정상상태 성능을 예측했다. 이렇게 예측된 결과와 실제 정상상태 성능시험 결과를 비교한 결과, 연료 소모량의 차이 3.68% 이내로 정상상태 성능을 예측할 수 있었다.

  • PDF

JMVC에서의 효율적인 예측구조 (Efficient Prediction Structure on Joint Multi-view Video Coding)

  • 김미영;윤효순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.386-389
    • /
    • 2012
  • 다시점 비디오는 3차원 정보를 표현하기 위한 영상으로 하나의 3차원 장면을 여러 시점에서 다수의 카메라로 촬영한 동영상이다. 영상들 사이에 존재하는 시간적 상관성과 화면간 상관성을 이용하는 다시점 비디오 부호화는 카메라의 수에 비례하여 데이터의 양이 늘어나기 때문에 계산량을 줄일 수 있는 다시점 비디오 부호화 기술이 필요하다. 본 논문에서는 다시점 비디오의 부호화 성능을 향상시키기 위한 효율적인 예측구조를 제안한다. 제안한 예측 구조는 다시점 비디오의 부호화 효율을 높이기 위하여 부호화되는 현재 화면과 현재 화면이 참조하는 참조 화면들과의 평균 거리, B계층 최대 인덱스 그리고 각 B계층의 화면 수를 고려하였다. 제안한 예측 구조의 성능을 참조 예측 구조의 성능과 비교하였을 때 영상 화질 면에 있어서 제안한 예측 구조가 참조 예측 구조보다 약 0.07~0.13 (dB) 성능 향상을 보였다. 발생되는 평균 초당 비트량에 있어서 제안한 예측 구조가 참조 예측 구조보다약 +3 ~ -6.5(Kbps) 감소하였다.

토지 이용 변화 예측 모형의 정확도 검정을 위한 통계량 연구 (Assessing the Metric to Measuring Land-Use Change Suitability)

  • 김오석
    • 한국경제지리학회지
    • /
    • 제16권3호
    • /
    • pp.458-471
    • /
    • 2013
  • 본 논문은 토지 이용 변화를 예측하는 계량 모형의 정확도 평가에 필수적인 통계량인 성능 지수를 심도 있게 이해하는 것을 목적으로 한다. 이 통계량은 기존의 토지 이용 변화 연구에서 소개된 예측 모형의 정확도를 평가하는 다른 통계량들 (예: 카파 통계량)의 단점을 보완하여 만들어진 것이나, 이 또한 계량 모형의 예측력을 명확하게 평가하고 해석하기에는 제한적이다. 본 논문에서는 성능 지수의 보다 명확한 해석을 위해서 결과물의 공간해상도를 고정해야 함을 밝히고, 그 특정 공간해상도를 "성능 해상도"라 정의한다. 성능 해상도는 예측오류가 현격하게 줄어들면서 계량모형의 예측력이 증가하는 시점의 공간해상도를 일컫는다. 따라서 토지 이용 변화 예측 모형의 예측력을 정확하게 평가하기 위해 두 통계량, 즉 성능 지수와 성능 해상도를 함께 이용할 것을 제안한다.

  • PDF

역학적 모델과 딥러닝 모델을 결합한 저수지 수온 및 수질 예측 (Predicting water temperature and water quality in a reservoir using a hybrid of mechanistic model and deep learning model)

  • 김성진;정세웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2023
  • 기작기반의 역학적 모델과 자료기반의 딥러닝 모델은 수질예측에 다양하게 적용되고 있으나, 각각의 모델은 고유한 구조와 가정으로 인해 장·단점을 가지고 있다. 특히, 딥러닝 모델은 우수한 예측 성능에도 불구하고 훈련자료가 부족한 경우 오차와 과적합에 따른 분산(variance) 문제를 야기하며, 기작기반 모델과 달리 물리법칙이 결여된 예측 결과를 생산할 수 있다. 본 연구의 목적은 주요 상수원인 댐 저수지를 대상으로 수심별 수온과 탁도를 예측하기 위해 기작기반과 자료기반 모델의 장점을 융합한 PGDL(Process-Guided Deep Learninig) 모델을 개발하고, 물리적 법칙 만족도와 예측 성능을 평가하는데 있다. PGDL 모델 개발에 사용된 기작기반 및 자료기반 모델은 각각 CE-QUAL-W2와 순환 신경망 딥러닝 모델인 LSTM(Long Short-Term Memory) 모델이다. 각 모델은 2020년 1월부터 12월까지 소양강댐 댐 앞의 K-water 자동측정망 지점에서 실측한 수온과 탁도 자료를 이용하여 각각 보정하고 훈련하였다. 수온 및 탁도 예측을 위한 PGDL 모델의 주요 알고리즘은 LSTM 모델의 목적함수(또는 손실함수)에 실측값과 예측값의 오차항 이외에 역학적 모델의 에너지 및 질량 수지 항을 제약 조건에 추가하여 예측결과가 물리적 보존법칙을 만족하지 않는 경우 penalty를 부가하여 매개변수를 최적화시켰다. 또한, 자료 부족에 따른 LSTM 모델의 예측성능 저하 문제를 극복하기 위해 보정되지 않은 역학적 모델의 모의 결과를 모델의 훈련자료로 사용하는 pre-training 기법을 활용하여 실측자료 비율에 따른 모델의 예측성능을 평가하였다. 연구결과, PGDL 모델은 저수지 수온과 탁도 예측에 있어서 경계조건을 통한 에너지와 질량 변화와 저수지 내 수온 및 탁도 증감에 따른 공간적 에너지와 질량 변화의 일치도에 있어서 LSTM보다 우수하였다. 또한 역학적 모델 결과를 LSTM 모델의 훈련자료의 일부로 사용한 PGDL 모델은 적은 양의 실측자료를 사용하여도 CE-QUAL-W2와 LSTM 보다 우수한 예측 성능을 보였다. 연구결과는 다차원의 역학적 수리수질 모델과 자료기반 딥러닝 모델의 장점을 결합한 새로운 모델링 기술의 적용 가능성을 보여주며, 자료기반 모델의 훈련자료 부족에 따른 예측 성능 저하 문제를 극복하기 위해 역학적 모델이 유용하게 활용될 수 있음을 시사한다.

  • PDF

Bi-Cross 사전 학습을 통한 자연어 이해 성능 향상 (The Bi-Cross Pretraining Method to Enhance Language Representation)

  • 김성주;김선훈;박진성;유강민;강인호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.320-325
    • /
    • 2021
  • BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.

  • PDF

퍼지시스템과 신경 회로망의 예측성능 비교분석 (Comparison of Fuzzy System and Neural Network as Predictor)

  • 공창욱;김인택
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.516-521
    • /
    • 1998
  • 본 논문에서는 비선형 시스템 해석 문제에 널리 이용되고 있는 퍼지 시스템(Fuzzy System)과 신경 회로망(MlPNN)의 성능을 평가하기 위해 비선형 예측기를 구성하였고 두 예측기를 비선형 시계열(Time Series) 예측 문제에 적용하여 두 예측기의 성능을 비교 분석하였다. 예측 실험을 위한 데이터로 Mackey-Glass와 Lorenz 시계열을 사용하였다.

  • PDF

TBM 굴진성능 예측모델 분석: 리뷰 (Analysis on prediction models of TBM performance: A review)

  • 이항로;송기일;조계춘
    • 한국터널지하공간학회 논문집
    • /
    • 제18권2호
    • /
    • pp.245-256
    • /
    • 2016
  • TBM을 적용하는 현장에서 장비 선택, 공사기간 및 공사비용의 합리적인 산정을 위하여 TBM의 굴진성능을 정확하게 예측하는 것은 매우 중요한 사안이다. 본 연구에서는 최신 자료들을 바탕으로 기존의 TBM 굴진성능 예측모델들의 평가과정과 방법론에 대한 분석을 수행하였다. 2000년 이후에 발표된 문헌들에 대한 조사를 토대로 TBM 굴진성능 예측모델의 분류체계를 제시하였다. 본 연구에서 제시한 분류체계에서는 TBM 굴진성능 예측모델에 필요한 입력인자 선정단계와 예측기법 적용단계로 크게 구분하였다. 또한 각 예측모델에서 사용된 입력인자, 출력인자 그리고 예측모델에서 사용된 인자의 적용빈도를 분석하였다. 마지막으로 TBM 굴진성능 예측모델의 현황과 향후 연구방향에 대하여 제언하였다.

암호화폐 종가 예측 성능과 입력 변수 간의 연관성 분석 (Understanding the Association Between Cryptocurrency Price Predictive Performance and Input Features)

  • 박재현;서영석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권1호
    • /
    • pp.19-28
    • /
    • 2022
  • 최근 암호화폐가 많은 주목을 받음에 따라 암호화폐의 종가 예측 연구들이 활발히 진행되고 있다. 특히 딥 러닝 모델을 적용시켜 예측 성능을 높이려는 연구들이 지속되고 있다. 딥 러닝 모델 중 시계열 데이터에서 높은 예측 성능을 보이는 LSTM (Long Short-Term Memory) 모델이 다각도로 응용되고 있으나 변동성이 큰 암호화폐 종가 데이터에서는 낮은 예측 성능을 보인다. 이를 해결하기 위해 새로운 입력 변수를 찾아내고, 이를 사용하는 종가 예측 연구가 수행되고 있다. 그러나 딥 러닝 기반의 암호화폐 종가 예측에 사용되는 데이터들의 각 입력 변수들이 예측 성능에 미치는 영향력이나 학습에 효율적인 입력 변수들의 조합에 관한 연구 사례가 부족한 실정이다. 따라서 본 논문에서는 Bitcoin과 Ethereum을 포함한 6가지 암호화폐의 최근 동향 자료를 수집하였고, 통계와 딥 러닝을 통해 입력 변수들이 암호화폐 종가 예측에 미치는 영향력을 분석한다. 실험 결과 모든 암호화폐의 종가 예측 성능 평가에서 종가 변동률을 제외한 개장가, 고가, 저가, 거래량, 종가를 조합했을 때 가장 우수한 성능을 보였다.

기계학습 기반 전력망 상태예측 모델 성능 유지관리 자동화 기법 (Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model)

  • 이해성;이병성;문상근;김준혁;이혜선
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.413-418
    • /
    • 2020
  • 초기 학습 데이터의 과적합으로 인한 전력망 상태예측 모델의 성능 감소를 방지하고 예측모델의 예측 정확도 유지를 통한 계속적인 현장활용을 위해서는 기계학습 모델의 예측 정확도를 지속적으로 관리할 필요가 있다. 이를 위해, 본 논문에서는 다양한 요인에 의해 끊임없이 변화하는 전력망 상태 데이터의 특성을 고려하여 예측모델의 정확성과 신뢰성을 높이고 현장 적용 가능한 수준의 품질을 유지하기 위한 기계학습 기반 전력망 상태예측 모델의 성능 유지관리 자동화 기법을 제안한다. 제안 기법은 워크플로우 관리 기술의 적용을 통해 전력망 상태예측 모델 성능 유지관리를 위한 일련의 태스크들을 워크플로우의 형태로 모델링하고 이를 자동화하여 업무를 효율화 하였다. 또한, 기존 기술에서는 시도되지 않았던 학습데이터의 통계적 특성 변화 정도와 예측의 일반화 수준을 모두 고려한 예측모델의 성능 평가를 통해 성능 결과의 신뢰성을 확보하고 이를 통해 예측 모델의 정확도를 일정 수준으로 유지관리하고 더욱 성능이 우수한 예측모델의 신규 개발이 가능하다. 결과적으로 본 논문에서 제안하는 전력망 상태예측 모델 성능 유지관리 자동화 기법을 통해 예측모델의 성능 저하문제를 해결하여 분산자원 연계 등 외부 환경의 변화에 유연한 예측모델 관리를 통해 정확성과 신뢰성이 보장된 예측 모델의 지속적인 활용이 가능하다.