Proceedings of the Korean Society of Broadcast Engineers Conference
/
2000.11b
/
pp.119-124
/
2000
하루 동안에도 인터넷의 QoS(Quality of Service)는 급속하게 변하므로 예측한다는 것은 불가능하며 열악한 인터넷망에서 효율적인 비디오 서비스를 제공하는데는 많은 어려움이 있다. 본 연구에서는 통신 환경이 열악한 인터넷 상에서 보다 효율적인 비디오 서비스를 제공하기 위한 적응적 QoS 관리 방법을 제시하고 확률적 분석과 시뮬레이션을 통해 서로의 결과를 비교한다. 첫째, 패킷 크기와 지연, 손실률의 관계와 하루 동안의 인터넷망의 QoS 변화를 파악한다. 둘째, Reed-Solomon code의 효율성을 확률적 분석을 통해 알아본다. 셋째, 인터넷망의 에러 패턴을 실제 시뮬레이션과 확률적 분석을 통해 비교한다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39A
no.6
/
pp.303-309
/
2014
Chaos communication system can improve a system security due to characteristics of non-periodic, non-predictability, broadband signal and easy implementation. Also, chaos signal is sensitive to initial conditions of chaos map. By these reasons, security of chaos communication system is superior to digital communication system. BER performance of COOK modulation system is better than other chaos modulation systems, even if COOK modulation system uses an asynchronous receiver. However, security and safety of COOK modulated signal are worse than other chaos modulation systems, because information bits can be easily predicted from COOK modulated signal. In this paper, for security improvement of COOK modulated signal, we propose a novel Scrambling COOK modulation system by applying the scrambling method. Conventional COOK modulated signal can be predicted, because chaos signal is generated when data is only 1. However, proposed system cannot be predicted, because chaos signal is generated when data is 0 or 1. Therefore, security and safety of transmitted signal in scrambling COOK modulation system is superior to conventional COOK modulation system.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.70-70
/
2023
강우 발생 중 용담댐 상류로부터 용담댐으로 유입되는 유입량을 정확하게 예측하는 것은 하류 지역의 홍수 피해를 최소화하기 위한 댐의 적절한 운영에 필수적이다. 물리 기반 강우-유출 시뮬레이션 모형은 물리적 과정의 이해를 바탕으로 홍수 예측 분야에 광범위하게 사용되고 있다. 그러나 복잡한 물리 과정을 완벽히 이해하는 것은 거의 불가능하므로 다양한 가정 조건들을 이용해 복잡한 과정을 단순화하여 계산해야 하는 한계가 존재한다. 최근에는 방대한 데이터의 축적과 컴퓨터 능력의 향상으로 인해 데이터 기반 모형이 다양한 실무 문제를 해결하는 데 강력한 도구로 활용되고 있을 뿐 아니라 시뮬레이션 및 예측 등에도 다양하게 이용되고 있다. 그러나 예측 시간이 늘어날수록 입력자료로 이용되는 과거 자료와 출력자료로 이용되는 미래자료와의 상관관계가 줄어들어 모형의 성능이 저하된다. 따라서 본 연구에서는 용담댐의 시간당 유입량을 예측하기 위해 물리 기반 강우-유출 모형과 오차 보정 모형을 결합한 하이브리드 접근 방식을 제안한다. 물리 기반 강우-유출 모형으로는 HEC-HMS 모형을 사용하였으며, 오차 보정 모형에는 기계학습 모형인 인공신경망(Artificial Neural Network, ANN) 모형을 사용하였다. HEC-HMS 모형, ANN 및 하이브리드 모형(HEC-HMS + ANN)의 성능을 비교하기 위해 20 개의 홍수 사상을 모형 구축 및 검증에 사용하였다. 그 결과 하이브리드 모형은 예측 시간이 늘어날수록 HEC-HMS 및 ANN 모형보다 우수한 성능을 나타냈다. 물리모형에 기계학습을 이용한 오차 보정 절차를 통합한 경우 홍수 유출 예측의 정확성이 향상되었다. 다양한 모형의 비교 결과 본 연구에서 적용한 하이브리드 모형이 물리기반 강우-유출 모형 및 순수 기계학습 모형보다 우수한 성능을 보여줌으로써, 하이브리드 모형은 물리모형과 순수 기계학습 모형의 단점들을 보완하는데 이용할 수 있음을 나타낸다. 이 연구의 주요 목적은 강우-유출 시물레이션 모형의 오차 보정 기술에 대한 더 깊은 이해를 제공하는데 있다.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.302-306
/
2016
우리나라는 전 국토의 70%가 산지이고 하천경사가 다른 나라에 비해 상대적으로 급하여 홍수 관리에 매우 불리한 조건을 가지고 있으며, 특히 홍수기간의 집중호우 및 돌발홍수는 인명과 재산의 막대한 피해를 입히고 있다. 최근은 기후변화의 영향으로 집중호우 및 돌발홍수는 증가하는 추세에 있다. 이것은 홍수의 위험성 및 자연재해의 발생을 증대시키므로 이에 대한 하천유역 단위의 홍수량 예측 및 재해방지를 위한 설계기법의 개선과 개발, 신뢰성 있는 수문정보 획득을 위한 정밀 수문조사는 매우 필요한 상황이다. 기후변화에 대응하기 위한 수문조사의 방향은 새로운 국면에 접하였다고 볼 수 있다. 기존의 수문조사 방법을 통해 획득했던 수문량의 초과치를 벗어난 극대값의 수문량 관측 및 측정을 극복하는 문제, 홍수량 산정 및 예측을 위한 새로운 설계기법의 개발 또는 기존 방법의 개선 등 문제 해결을 위한 방향이 모색되어야 한다. 이러한 문제점을 해결하기 위해서는 중 소규모 유역 단위를 대상으로 지속적이고 신뢰성 있는 자료의 획득과 축적이 중요하나 시 공간적으로 모두 충족된 수문자료를 획득하기에는 불가능한 일이다. 따라서, 중 소규모 유역 단위의 대표성 있는 Test-bed 유역(설마천 유역/차탄천 유역)의 운영이 요구되며, 이를 통하여 얻어진 수문자료는 상기에 기술한 문제를 해결 가능하게 한다. Test-bed 유역에서 생성되는 수문자료에는 강우량, 하천수위, 지하수위 및 기상 등의 관측자료와 유량측정성과 자료가 있다. 관측된 수문자료를 이용하여 강우-유출량 분석, 증발산량 분석, 지하수함양량 분석 등 기본적인 수문특성을 분석하였다. 홍수량 예측 설계기법 개선으로는 홍수도달시간 산정방법을 검토하였으며, 최대강우강도-도달시간관계를 이용하여 도달시간을 개발하였다. 그리고 RDAPS 예측강우량과 수문모형을 이용하여 홍수량을 예측할 수 있는 시스템을 구축하였다. 유역 단위의 수문조사를 통해 생성된 수문자료는 다양한 분석과 설계에 응용되므로 지속적인 Test-bed 유역의 운영은 매우 필요한 실정이다.
Proceedings of the Korean Information Science Society Conference
/
2006.06a
/
pp.211-213
/
2006
실시간으로 변화하는 컴퓨터 통신 환경에서 멀티미디어 응용 프로그램은 QoS를 만족하기 위해 안정적으로 튜닝 되고 재구성되는 것이 필요하다. 그러나 안정적으로 QoS를 보장하는 것은 응용 프로그램의 자원 예약이나 실시간 보장과 같은 메카니즘을 제공하지 않은 일반적인 목적의 시스템 상에서 수행될 때 많은 어려움을 가지게 된다. 특히, 예측 불가능한 개방형 환경에서 최우선 자원 할당에 의해 발생되는 자원의 유효성에 대응하기 위해 QoS 적응은 수행되어야 한다. 그러나 적응을 언제, 어떻게 조정해야 하고 폭 넓은 범위에서 응용 프로그램에 어떻게 적용시킬지를 알기 위해 일반적인 알고리즘을 제시해야할 필요가 있다. 이러한 목적을 위해, 본 논문에서는 멀티미디어 어플리케이션의 파라미터를 모델링하고, 파라미터간의 관계를 정량적으로 얻기 위해 계층적 QoS 프로빙 알고리즘을 적용한다. 이것을 기반으로 설계된 베이지안 네트워크를 이용하여 불확실한 정보를 확률값으로 처리함으로써 적응 행동을 예측하도록 한다. 마지막으로 실제 실험을 통해 제안된 미들웨어의 유용성을 확인한다.
Park, YoungGill;In, Hoh Peter;Kim, Nunghoe;Lee, Jungbin
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.1373-1376
/
2012
복무적합도 검사는 정신질환이나 사고가능성이 있는 병사를 감별하고, 입대 후 적응문제로 조기 전역할 수 있는 집단을 예측하는 신인성검사 중 하나로, 현재 군에서 징병 및 입영단계에 실시하는 인성검사이다. 이는 전체 검사대상자를 상대로 정신과적 문제 식별을 위한 개별면담이 불가능하기 때문에 위 검사를 통해 대상자를 효율적으로 선별하기 위함이다. 본 연구는 데이터 마이닝을 통해 복무적합도 검사의 판정을 예측 할 수 있을지 확인하고자 하였다. 이를 위해 데이터 마이닝의 기법 중 회귀분석의 로지스틱 회귀분석 기법이 복무적합도검사 판정에 우수한 성능을 보임을 확인하였고, 로지스틱 회귀분석의 추정된 회귀계수를 이용하여 만든 반응확률에 대한 예측 모형식은 높은 정분류율을 보였고 평가 결과 통계적으로 의미가 있음을 증명하였다. 따라서 본 연구 결과를 활용하면 소수의 문항으로 복무적합도 검사 이전의 선별용 검사 개발이나 자가 진단용 검사 개발로 활용이 가능 할 것으로 기대한다.
Prediction of a stock price has been a subject of interest for a long time in financial markets, and thus, many studies have been conducted in various directions. As the efficient market hypothesis introduced in the 1970s acquired supports, it came to be the majority opinion that it was impossible to predict stock prices. However, recent advances in predictive models have led to new attempts to predict the future prices. Here, we summarize past studies on the price prediction by evaluation measures, and predict the direction of stock prices of Samsung Electronics, LG Chem, and NAVER by applying various machine learning models. In addition to widely used technical indicator variables, accounting indicators such as Price Earning Ratio and Price Book-value Ratio and outputs of the hidden Markov Model are used as predictors. From the results of our analysis, we conclude that no models show significantly better accuracy and it is not possible to predict the direction of stock prices with models used. Considering that the models with extra predictors show relatively high test accuracy, we may expect the possibility of a meaningful improvement in prediction accuracy if proper variables that reflect the opinions and sentiments of investors would be utilized.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.2-2
/
2015
최근 국지성 집중호우 및 돌발홍수와 같은 급격한 기상변화로 인한 기상재해의 발생빈도가 증가함에 따라 기존 지상 기상관측소로부터 얻어지는 직접탐측 자료보다는 기상레이더와 위성영상 등 원격탐측 자료를 사용한 수문분야의 연구가 활발하게 진행되고 있다. 기상레이더는 넓은 지역에 걸쳐 실시간으로 강수현상 감시가 가능하며 지상우량계로는 파악이 불가능한 미계측 유역을 통과하는 국지적인 호우현상이나 강우장의 이동 및 변화의 파악도 빠른 시간에 가능한 장점이 있다. 본 연구는 기상레이더 공간적 분포와 지상관측소(AWS 및 ASOS) 자료를 연계한 통계적 레이더 강수량 추정(Quantitative Precipitation Estimation, QPE)과 레이더 강수장을 직접 추적하는 강수장 예측(Quantitative Precipitation Forecast, QPF)를 연계한 해석방안을 수립하였으며, 모형 적용과정은 다음과 같다. 첫째, 강우장의 공간적인 이동을 고려하기 위해 강우장으로 부터 이류(advection)패턴을 추출하여 각 강우세포가 가지는 이동방향 및 이동속도를 고려한 강우장 추적기법을 통하여 2시간의 선행시간을 가지는 강우장을 예측하고자 한다. 둘째, 과거 기상레이더 이미지와 지상관측소의 강수 특성을 파악한 후 앞서 예측된 레이더강우장의 형태와 가장 유사한 과거 레이더강우장과 동일 시간대에 지상관측소 강수시계열을 시나리오 형태로 구축한다. 본 연구를 통하여 개발된 기상레이더 영상 이미지 상관분석 기법을 활용한 초단기강우예측은 집중호우시 홍수 예 경보를 위한 수문모형의 입력자료로 활용이 가능하다. 즉, 수문모형과 연계한 고해상도 단기홍수 예측기술 적용이 가능할 것으로 판단되며, 향후 실시간 재해 예 경보에 활용성을 평가하고자 한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.264-266
/
2022
In order to apply the RNN model to the radio fingerprint-based indoor path generation technology, the data set must be continuous and sequential. However, Wi-Fi radio fingerprint data is not suitable as RNN data because continuity is not guaranteed as characteristic information about a specific location at the time of collection. Therefore, continuity information of sequential positions should be given. For this purpose, clustering is possible through classification of each region based on signal data. At this time, the continuity information between the clusters does not contain information on whether actual movement is possible due to the limitation of radio signals. Therefore, correlation information on whether movement between adjacent clusters is possible is required. In this paper, a deep learning network, a recurrent neural network (RNN) model, is used to predict the path of a moving object, and it reduces errors that may occur when predicting the path of an object by generating continuous location information for path generation in an indoor environment. We propose a method of giving correlation between clustering for generating an improved moving path that can avoid erroneous path prediction that cannot move on the predicted path.
Up to now Permanent traffic volumes have been counted by Automatic Vehicle Classification (AVC) on National Highways. When counted data have missing items or errors, the data must be revised to stay statistically reliable This study was carried out to estimate correct data based on outoregression and seasonal AutoRegressive Integrated Moving Average (ARIMA). As a result of verification through seasonal ARIMA, the longer the missed period is, the greater the error. Autoregression results in better verification results than seasonal ARIMA. Traffic data is affected by the present state mote than past patterns. However. autoregression can be applied only to the cases where data include similar neighborhood patterns and even in this case. the data cannot be corrected when data are missing due to low qualify or errors Therefore, these data shoo)d be corrected using past patterns and seasonal ARIMA when the missing data occurs in short periods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.