최근 국내 건설계약 문화가 선진화 되어가고 클레임 발생 건수가 증가함에 따라 클레임 관리의 중요성이 부각되고 있다. 선진 외국의 경우 분쟁 예방 및 건설 분쟁에 따른 문제점을 최소화하기 위한 클레임 관리 기법의 개발 및 클레임 자료의 데이터베이스화 방안에 관한 연구가 지속적으로 이루어져 왔으나, 국내의 경우 최근 클레임 발생 건수의 급속한 증가 추세에도 불구하고 이에 대한 연구는 매우 미흡한 실정이다. 본 연구의 목적은 클레임 판례/사례, 유권해석 및 법률조항의 분석을 통해 규명된 원인요소를 중심으로 클레임의 예방과 해결을 위한 분류체계 및 알고리즘을 개발하고, 웹 및 데이터베이스 기술을 활용하여 건설 프로젝트 참여 주체들이 자신의 클레임 사안들을 보다 쉽게 분석하고 예방과 해결을 위한 의사결정을 지원할 수 있도록 하는 전산화 시스템을 개발하는 것이다. 개발 시스템의 활용을 통해 건설 프로젝트 참여 주체는 클레임 판례/사례, 유권해석, 법률조항, 책임관계 및 타당성 등을 체계적으로 분석하여 예측 가능한 클레임을 사전에 대비하고 발생된 클레임 사안에 효과적으로 대처하여 클레임 처리 업무의 효율성을 향상시킬 수 있을 것으로 기대된다.
유방 악성 상태를 분류하기 위한 최종 진단은 침습적 생검을 이용한 현미경 분석을 통해 확인이 가능하나, 분석을 위해 일정 시간과 비용이 부과되며, 병리학적 지식을 보유한 전문가가 필요하다. 이러한 문제를 극복하기 위해, 딥 러닝을 활용한 진단 기법은 조직병리학적 이미지에서 유방암을 양성 및 악성으로 분류에 효율적인 방법으로 고려된다. 본 연구는 유방암 조직병리학적 이미지를 40배 확대한 BreaKHIS 데이터 세트를 사용하여 양성 및 악성으로 분류하였으며, 100% 미세 조정 체계와 Adagrad를 이용한 최적화로 사전 훈련된 컨볼루션 신경망 모델 아키텍처를 사용하였다. 사전 훈련된 아키텍처는 InceptionResNetV2 모델을 사용하여 마지막 계층을 고밀도 계층과 드롭아웃 계층으로 대체하여 수정된 InceptionResNetV2를 생성하도록 구성되었다. 훈련 손실 0.25%, 훈련 정확도 99.96%, 검증 손실 3.10%, 검증 정확도 99.41%, 테스트 손실 8.46%와 테스트 정확도 98.75%를 입증한 결과는 수정된 InceptionResNetV2 모델이 조직병리학적 이미지에서 유방 악성 유형을 예측하는 데 신뢰할 수 있음을 보여주었다. 향후 연구는 k-폴드 교차 검증, 최적화, 모델, 초 매개 변수 최적화 및 100×, 200× 및 400× 배율에 대한 분류에 초점을 맞추어 추가실험이 필요하다.
4차 산업 혁명 이후 디지털 트윈, IoT 및 AI 등의 기술 발전에 따라 고차원적인 데이터 분석을 기반으로 의사결정 문제를 해결하고 있는 추세이다. 이는 최근 항만물류 분야에도 적용되고 있으며 항만 생산성 향상을 위해 컨테이너 터미널을 대상으로 빅데이터 분석, 딥러닝 예측, 시뮬레이션 등의 연구가 다수 이루어지고 있다. 이러한 고차원적 데이터 분석 기법들은 일반적으로 많은 데이터 수를 요구한다. 그러나 2020년 코로나19 팬데믹으로 인해 전 세계 항만의 환경은 변화하였다. 코로나19 발병 이전의 데이터를 현재 항만 환경에 적용하는 것은 적절하지 않으며, 발병 이후의 데이터는 딥러닝 등의 데이터 분석에 적용하기에 충분히 수집되지 않았다. 따라서 본 연구에서는 이러한 문제 해결 방법의 하나로 데이터 분석을 위한 항만 데이터 증강 방법을 제시하고자 한다. 이를 위해 컨테이너 터미널 운영 측면에서 생성적 적대 신경망 모형을 통해 야드의 컨테이너 장치 상태를 생성하고, 실제 데이터와 증강된 데이터 간의 통계적 분포 확인을 통해 유사성을 검증하였다.
이 논문에서는 RNN (Recurrent Neural Networks)-LSTM (Long Short-Term Memory) 을 적용하여 Lorenz 시스템을 예측하는 자료 기반 인공지능 모델을 구축하고, 이 모델이 미분방정식을 차분화하여 해를 구하는 역학 모델을 대체할 수 있는지 가능성을 진단하였다. 구축된 자료기반 모델이 초기 조건의 작은 교란이 근본적으로 다른 결과를 만들어내는 Lorenz 시스템의 카오스적인 특성을 반영한다는 것과, 시스템의 안정적인 두 개의 닻을 중심으로 운동하면서 전이 과정을 반복하는 특성, "결정론적 불규칙 흐름"의 특성, 분기 현상을 모사한다는 것을 확인하였다. 또한, 적분 시간 간격을 조절함으로써 전산자원을 절감할 수 있는 자료기반 모델의 장점을 보였다. 향후 자료기반 모델의 정교화와 자료기반 모델을 위한 자료동화 기법의 연구를 통해 자료기반 인공지능 모델의 활용성을 확대할 수 있을 것으로 기대한다.
본 연구는 국내 범죄심리학(criminal psychology)의 학문적 정체성을 확립하기 위한 기초로 범죄심리학이 어떤 영역들을 연구해야 되는지를 탐색해 보았다. 이를 위해서 주로 심리학 분야와 심리학자들의 연구에 한정시켜 국내외 학자들의 범죄심리학에 대한 정의, 국내외 일부 범죄심리학 교재들의 주요 장과 그 구성내용, 그리고 범죄심리학과 연구영역들이 중첩되는 법정심리학(forensic psychology), 법심리학(legal psychology)의 국내외 일부 저술들의 주요 장과 내용들을 비교분석해 보았다. 또한 한국심리학회와 5개 분과학회 등 총 6개 학술지의 창간호부터 2004년 마지막 호 또는 2005년 1호까지에 게재된 논문들과 이들 학회들 중 일부 학회와 법심리학회에서 실시한 심포지움의 주제와 발표내용들을 중심으로, 범죄심리학의 연구영역과 연구주제에 포함될 수 있다고 판단되는 내용들을 범죄심리학의 이론적 기초와 응용의 두 차원에서 분류해 보았다. 이러한 분류된 내용들을 기초로 하고, 일반인이 범죄를 행하고, 처벌을 받고, 다시 사회인으로 복귀하는 전과정을 8개 과정으로 세분하여 각 과정에 상응하는 연구영역, 관련된 심리학의 분야, 그리고 범죄심리학의 하위 분야를 제시해 봄으로써 연구자가 상정하는 한국의 범죄심리학이 주로 다루어야 될 연구영역을 탐색해 보았다. 주요 연구영역으로 범죄심리학의 이론, 일반심리학적 이론, 공격성·분노·도덕성, 청소년 비행, 범죄동기와 범죄인 심리, 범죄피해자, 수사기법, 증언, 범죄자 평가·상담·교정·사회복귀, 범죄예측과 범죄예방 등을 제시했다. 끝으로 한국 범죄심리학의 학문적 발전을 위한 몇 가지 제언을 했다.
최근 국내에서 외래 곤충인 (가칭)마른나무흰개미(Cryptotermes domesticus)가 서울에 위치한 주택에서 발견되었다. 이 종은 국내에 정착할 경우 잠재적으로 목재나 목조건물에 피해를 줄 수 있어 시급한 국내 발생 조사가 필요하다. 본 연구에서는 종 분포 모델 기법을 활용하여 마른나무흰개미의 정착 가능성과 관련된 기후적합성을 추정하는 것을 목표로 하였다. 문헌 자료를 바탕으로 전세계 분포 정보를 수집하고, 생물기후변수를 활용하여 4개의 모델링 알고리즘으로 기후적합성 예측 모델을 구동하였다. 개발한 모델들의 결과를 종합하여 최종적으로 마른나무흰개미의 평균 발생 확률로 표현되는 앙상블 모델을 개발하였다. 그 결과 마른나무흰개미는 열대 지방에서에서 해양성 기후를 보이는 연안이나 도서지역에서 기후적합성이 높을 것으로 예상되었다. 국내에서는 기후적합성이 전반적으로 낮을 것으로 추정되었다. 하지만, 마른나무흰개미의 정착 및 확산 가능성을 염두해두고, 최근 발생이 보고된 지점을 중심으로 정밀 역학 조사가 필요할 것으로 보인다.
오늘날 AI(Artificial Intelligence) 기술이 발전하면서 실용성이 증가함에 따라 실생활 속 다양한 응용 분야에서 널리 활용되고 있다. 이때 AI Model은 기본적으로 학습 데이터의 다양한 통계적 속성을 기반으로 학습된 후 시스템에 배포되지만, 급변하는 데이터의 상황 속 예상치 못한 데이터의 변화는 모델의 성능저하를 유발한다. 특히 보안 분야에서 끊임없이 생성되는 새로운 공격과 알려지지 않은 공격에 대응하기 위해서는 배포된 모델의 Drift Signal을 찾는 것이 중요해짐에 따라 모델 전체의 Lifecycle 관리 필요성이 점차 대두되고 있다. 일반적으로 모델의 정확도 및 오류율(Loss)의 성능변화를 통해 탐지할 수 있지만, 모델 예측 결과에 대한 실제 라벨이 필요한 점에서 사용 환경의 제약이 존재하며, 실제 드리프트가 발생한 지점의 탐지가 불확실한 단점이 있다. 그 이유는 모델의 오류율의 경우 다양한 외부 환경적 요인, 모델의 선택과 그에 따른 파라미터 설정, 그리고 새로운 입력데이터에 따라 크게 영향을 받기에 해당 값만을 기반으로 데이터의 실질적인 드리프트 발생 시점을 정밀하게 판단하는 것은 한계가 존재하게 된다. 따라서 본 논문에서는 XAI(eXplainable Artificial Intelligence) 기반 Anomaly 분석기법을 통해 실질적인 드리프트가 발생한 시점을 탐지하는 방안을 제안한다. DGA(Domain Generation Algorithm)를 탐지하는 분류모델을 대상으로 시험한 결과, 배포된 이후 데이터의 SHAP(Shapley Additive exPlanations) Value를 통해 Anomaly score를 추출하였고, 그 결과 효율적인 드리프트 시점탐지가 가능함을 확인하였다.
레스토랑 산업의 성장과 함께 레스토랑 오프라인 매장 수는 점차 증가하지만, 소비자는 자신의 선호도에 적합한 레스토랑을 선택하는 데 어려움을 경험하고 있다. 따라서 소비자의 선호도에 맞는 레스토랑을 추천하는 개인화된 추천 서비스의 필요성이 대두하고 있다. 기존 연구에서는 설문조사 및 평점 정보를 활용하여 소비자 선호도를 조사했으나, 이는 소비자의 구체적인 선호도를 효과적으로 반영하는데 어려움이 존재한다. 이러한 배경하에 온라인 리뷰는 방문 동기, 음식 평가 등 레스토랑에 대한 소비자 구체적인 선호도를 효과적으로 반영하기 때문에 필수적인 정보이다. 한편, 일부 연구에서는 리뷰 텍스트에 전통적인 기계학습 기법을 적용하여 소비자의 선호도를 측정하였다. 그러나 이러한 접근 방식은 주변 단어나 맥락을 고려하지 못하는 한계점이 존재한다. 따라서 본 연구는 딥러닝을 효과적으로 활용하여 온라인 리뷰에서 소비자의 선호도를 정교하게 추출하는 리뷰 텍스트 기반 레스토랑 추천 모델을 제안한다. 본 연구에서 제안된 모델은 추출된 높은 수준의 의미론적 표현과 소비자-레스토랑 상호작용을 연결하여 소비자의 선호도를 정확하고 효과적으로 예측한다. 실험 결과에 따르면 본 연구에서 제안된 추천 모델은 기존 연구에서 제안된 여러 모델에 비해 우수한 추천 성능을 보이는 것으로 나타났다.
본 연구의 목적은 최근 확산되고 있는 국내 비대면 의료 서비스 애플리케이션의 서비스 속성과 소비자 반응을 정확히 평가하고 각 서비스간 차별성을 시각화하기 위한 방안을 모색하는 것이다. 이를 위해 국내에서 서비스 중인 주요 6개 비대면 진료 애플리케이션의 구글 플레이스토어 사용자 리뷰 데이터 총 2만 건을 수집하였다. 수집된 데이터에 대해 문장 단위로 분리한 후, BERTopic 모델링 기법을 적용하여 각 문장이 속한 서비스 속성에 대한 토픽을 도출하였다. 다음으로 미세조정된 KoBERT 모델을 통해 각 문장의 토픽에 대한 감성 점수를 예측하였다. 분석 결과, 사용자 리뷰로부터 애플리케이션 속성과 진료 속성 두 가지 범주 아래에서 각각 5개와 3개의 서비스 특성 토픽이 발견되었다. 애플리케이션 속성으로는 '예약 시스템', '사용 용이성', '재고 확인', '디자인', '안정성' 등이, 진료 속성으로는 '원격 의료적 속성', '편의성', '배송' 등이 도출되었다. 각 애플리케이션은 이러한 속성들에 대해 다른 수준의 감성 점수를 보였다. 주성분분석을 통해 속성별 감성 점수를 축약하여 2차원 공간 상의 포지셔닝 맵을 생성하였다. 결과적으로 본 연구는 비대면 진료 애플리케이션 사용자 리뷰 텍스트를 바탕으로 실증적 통계 방법과 텍스트 마이닝 기술을 접목하여 서비스 속성 도출, 감성 분석, 제품 포지셔닝 이라는 일련의 체계를 제시하고 있다. 이는 비대면 진료 애플리케이션의 서비스 품질과 소비자 반응을 객관적으로 진단할 수 있는 효과적인 방안이 될 것으로 기대된다.
본 논문에서는 김치 제조 공정 중 배추 심 제거 공정의 로봇 자동화를 위한 배추 심 영역 및 깊이를 판별하는 딥러닝 모델을 제안하는 것이다. 또한 계측된 배추의 심 깊이를 예측하는 것이 아닌 discrete 클래스로 변환하여 영역 검출 및 분류를 동시에 하는 모델을 제시하였다. 딥러닝 모델 학습 및 검증을 위하여 전처리 과정을 거지치 않고 수확된 배추 522 포기에 대한 RGB 영상을 획득하였다. 획득한 영상으로부터 심 영역 및 깊이 라벨링 그리고 데이터 증강 기법을 적용하였다. 제안하는 YOLO-v4 딥러닝 모델 기반 배추 심 영역 검출 및 분류 모델의 성능을 평가하기 위하여 mAP, IoU, accuracy, sensitivity, specificity 그리고 F1-score로 선정하였다. 그 결과 배추 심 영역 검출은 mAP 그리고 IoU 값이 각각 0.97 그리고 0.91로 나타났으며, 심 깊이 분류의 경우 accuracy 그리고 F1-score 값이 각각 96.2% 그리고 95.5%로 나타났다. 본 연구 결과를 통하여 배추의 심 영역 검출 및 깊이 정보 분류가 가능하며, 추후 배추 심 제거 공정의 로봇-자동화 시스템 개발에 활용될 수 있는 가능성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.