• Title/Summary/Keyword: 예측타당성

Search Result 1,095, Processing Time 0.033 seconds

Shipboard Fire Evacuation Route Prediction Algorithm Development (선박 화재시 승선자 피난동선예측을 위한 알고리즘 개발 기초연구)

  • Hwang, Kwang-Il;Cho, So-Hyung;Ko, Hoo-Sang;Cho, Ik-Soon;Yun, Gwi-Ho;Kim, Byeol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.519-526
    • /
    • 2018
  • In this study, an algorithm to predict evacuation routes in support of shipboard lifesaving activities is presented. As the first step of algorithm development, the feasibility and necessity of an evacuation route prediction algorithm are shown numerically. The proposed algorithm can be explained in brief as follows. This system continuously obtains and analyzes passenger movement data from the ship's monitoring system during non-disaster conditions. In case of a disaster, evacuation route prediction information is derived using the previously acquired data and a prediction tool, with the results provided to rescuers to minimize casualties. In this study, evacuation-related data obtained through fire evacuation trials was filtered and analyzed using a statistical method. In a simulation using the conventional evacuation prediction tool, it was found that reliable prediction results were obtained only in the SN1 trial because of the conceptual and structural nature of the tool itself. In order to verify the validity of the algorithm proposed in this study, an industrial engineering tool was adapted for evacuation characteristics prediction. When the proposed algorithm was implemented, the predicted values for average evacuation time and route were very similar to the measured values with error ranges of 0.6-6.9 % and 0.6-3.6 %, respectively. In the future, development of a high-performance evacuation route prediction algorithm is planned based on shipboard data monitoring and analysis.

Short-Term Rainfall Forecast Using Artificial Neural Network and CAPPI (인공신경망과 CAPPI 자료를 이용한 단기 강우예측)

  • Jee, Gye-Hwan;Oh, Kyoung-Doo;Ahn, Won-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.72-76
    • /
    • 2011
  • 본 연구는 레이더 강우 영상에서 추출된 강우 패턴을 인공신경망으로 처리하여 단기 강우 예측을 수행하는 방안을 제시한 것이다. 본 연구에 활용한 CAPPI 영상자료로는 편차 보정과 품질 관리가 이루어지고 있으며 획득이 용이한 기상청 자료를 이용하였으며 CAPPI의 PNG 영상으로부터 강우 패턴을 추출하고, 이를 역전파 알고리즘의 인공신경망 강우 예측 모형에 학습시켜 단기 강우를 예측하기 위한 절차를 제시하였다. 이를 위하여 강우의 시공간적 변화 패턴 추출을 위한 영상 처리와 GIS 자료처리 기법을 제시하였고 이를 인공신경망의 단기 강우 예측 학습과 검증에 적용하여 본 연구에서 제시된 기법의 타당성을 검토하였다.

  • PDF

EMI filter의 감쇄 성능 예측을 위한 소자의 공통 및 차동 모드 모델링 기법

  • Kim, Hui-Seung;Baek, Mi-Ran;Won, Do-Hyeon;Hong, Seong-Su;No, Jeong-Uk;Han, Sang-Gyu;Won, Jae-Seon;O, Dong-Seong
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.464-465
    • /
    • 2010
  • EMI 감쇄성능의 정확한 예측을 위해서는 EMI 필터에 사용되는 소자에 대한 명확한 공통 및 차동 모드 임피던스 모델 정보가 필요하다. 하지만 기존의 전도성 EMI 감쇄성능 예측 방식은 이러한 모델의 부재로 인해 고주파수에서 예측 값과 실험 결과에 큰 오차가 발생하는 문제점이 있다. 이를 해결하기 위해 본 논문에서는 일반적으로 사용되는 EMI 필터의 소자를 전도성 전파 규제 범위에서 모델링하고 이를 이용하여 공통 및 차동모드 임피던스로 다시 모델링한다. 실험 결과 EMI 감쇄성능을 1MHz 이하의 영역에서만 예측할 수 있었던 기존 방식과 비교해 제안 방식은 10MHz 영역까지 예측할 수 있는 장점이 있다. 최종적으로 임피던스 분석기를 이용한 측정 결과와 모의실험 결과를 제시하여 제안 방식의 타당성 및 유용성을 검증한다.

  • PDF

Forecast Methodology study of power consumption using the RLS algorithm for efficient energy management in office buildings (사무용 건물의 효율적인 에너지 관리를 위한 RLS알고리즘을 활용한 전력 사용량 예측방법론 연구)

  • Yoon, Seok-Ho;Song, Ji-eun;Kim, Bong-Jun;Cho, Choong-Ho
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.537-538
    • /
    • 2016
  • 본 논문은 사무용 건물의 효율적인 에너지 관리를 위하여 실제 사무용 건물의 전력 사용량 빅 데이터를 이용하여 RLS 알고리즘을 활용한 사용량 예측 모델을 설계하였다. 예측모델을 통해 도출된 예측치와 실측 데이터 사이의 오차율을 계산하고, MA알고리즘을 사용한 예측값과의 비교를 통해 제안하는 변형된 RLS 알고리즘을 이용한 에너지 사용량 예측 방법론의 타당성과 우수성을 검증하였다.

A Comparison between Measurement Values and Prediction Values of Structure-borne noise induced by Subway (지하철 진동에 의한 구조음 실측치와 예측치 비교)

  • Lee, Tae-Ho;Ann, Yong-Chan;Cho, Jung-Sik;Lee, Ki-Ryung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.817-820
    • /
    • 2014
  • 지하철 인근 지역에서 차량 통과 시 차륜과 레일의 상호작용으로 인한 진동이 지반을 통하여 건물까지 전파되어 구조전달음이 발생하게 된다. 이러한 구조전달음이 발생하는 지하철 인근 지역에서 도로나 주거단지가 새롭게 조성될 예정인 경우, 완공 이후에 발생하는 구조전달음 영향을 사전에 평가하고 대책을 수립하는 것이 요구된다. 본 논문에서는 국내에 위치한 일부 역사에서의 구조전달음을 측정하고 국외의 예측식을 검토하여 구조전달음의 실측치와 예측치를 비교한다. 따라서 국내 지하철의 구조전달음 예측에 대하여 국외 예측식의 타당성을 검토함으로써 향후 건설될 지하구간 역사의 인근 주거지역에 대한 구조전달음을 예측하는데 기초 자료로 활용하고자 한다.

  • PDF

Case Study on Fault Prediction of Automated System (자동화 시스템의 고장예측 사례 연구)

  • Gang, Gil-Sun;Lee, Seung-Yeon;Im, Yu-Cheol;Lee, Jong-Hyo;Yu, Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.283-286
    • /
    • 2003
  • 본 연구는 기존의 고장진단 기법들을 토대로 주어진 자동화 시스템에 실제 적용이 가능한 고장예측 알고리즘을 제시한다. 고장예측은 시스템이 운용되는 도중에 제한된 정보와 컴퓨터 자원을 이용하여 수행되어야 하므로 실시간 적용을 위하여 2단계로 구분하여 수행된다. 첫 번째는 실시간 고장예측 단계로서 시스템 운용 중에 시스템의 고장 징후를 탐지하는 역할을 하며, 두 번째는 오프라인 고장예측 단계로서 실시간으로 고장 징후가 탐지되면 시스템의 작동을 멈춘 후 고장의 징후를 분류하고 식별하는 역할을 수행한다 원활한 고장예측 알고리즘을 도출하기 위해 자동화 시스템의 이산사건 모델과 연속시간 모델을 수립하였으며, 이들을 통합한 공정모델에 대하여 하이브리드 시뮬레이션 환경을 구축하였다. 제안된 기법은 자동화 시스템의 공정모델에 기구부, 모터부에 대한 고장모델을 부가하여 컴퓨터 시뮬레이션을 통하여 타당성을 검증하였다.

  • PDF

The Casestudy of Computerization for the Feasibility Analysis Model on the Development Project of Apartment (공동주택 개발사업 타당성 분석모형의 전산화)

  • Park, Keun-Joon;Shin, Woo-Shik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.2
    • /
    • pp.164-172
    • /
    • 2007
  • The development project usually aims to get a certain amount of return for its investment in land and capital. The success of such project is dependent on the accurate analysis of the feasibility and for casting. It is, however, very difficult to predict due to various environmental factors. For this, it is necessary to constitute a systematic and objective method of analysis. However, there is no method of analysis for numerous qualitative factors, such as legal, environmental, marketability. Moreover, conventional methods have some limitations because they are processed without all the scope of analysis items and any evaluation criteria. Therefore, this study will provide computerization model for feasibility study focusing on the apartment development project by a pre-sall method. This research does casestudies to assess the feasibility analysis by the computerization model and compares to the results of the conventional methods. It showed that the evaluation results for the qualitative analysis were proportional to actual sale result. This implies that qualitative subjective factors have high correlation with sale rate and sale prices.

A Validation Check of Simulation Model with the Model Transformation (모델변환에 의한 시뮬레이션 모델의 타당성 검사)

  • 정영식
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.9-9
    • /
    • 1992
  • 시뮬레이션(simulation)은 실 시스템(real system)의 효과적이고 효율적인 운영을 도모하기 위하여 실 시스템의 동작을 이해하고 분석, 예측, 평가하는 과학적인 문제해결 접근방법이다. 시뮬레이션 수행단계는 실 시스템의 행위를 정확히 반영하도록 타당한 모델을 구축하는 모델링 단계와 모델에 의도하는 명령어들을 컴퓨터 프로그램으로 작성하는 구현단계로 나누어진다. 시뮬레이션 모델은 시간, 상태, 확률변수, 상호규칙 등의 여러 관점에 따라 다양하게 존재하는데, DEVS(Descrete EVent system Specification) 모델은 연속적인 시간상에서 이산적으로 발생하는 사건에 따라 시스템의 상태를 분석할 수 있고 모델링 및 시뮬레이션 방법론의 형식화를 위한 견고한 이론적 기반을 제공하고 있다. 또한, DEVS 모델은 모듈적, 계층적 특성을 제공하고 집합론에 근거한 수학적 형식구조를 제공하여 실 시스템에 대한 체계적인 분석과정을 수행하게 되어 보다 현실적인 모델링을 가능하게 한다. 그러나 타당하지 못한 DEVS 모델이 구축되면 시뮬레이션을 통한 분석결과의 신뢰성이 떨어져 아무런 효과가 없고 경제적인 손실만이 따른다. DEVS 모델에 대한 기존의 타당성 검사가 많은 시간과 노력이 요구되고, 반복적인 DEVS 모델링 과정으로 인한 전문적이고 경험적인 지식을 요구한다. 또한, 모델설계자에 의해 설정된 실험 프레임하에서 DEVS 모델의 구성요소에 속하는 상태전이함수, 시간진행함수 및 출력함수에 대하여 commutative 성질의 보전성 검사가 어렵다는 문제점을 가지고 있다. 본 연구에서는 이와 같은 문제점을 해결하기 위하여, DEVS 모델에 대한 타당성 검사를 SPN(Stochastic Petri Net) 모델로 변환하여 SPN 모델을 이용하는 간단하고 효과적인 타당성 검사 방법을 제안한다. 먼저, DEVs 모델에 대한 개념과 기존의 DEVS 모델에 대한 타당성 검사 방법을 고찰하고 그 문제점에 대하여 자세히 설명한다. DEVS 모델의 타당성 검사에 이용하는 SPN 모델에 대한 개념과 DEVS 모델과 행위적으로 동등한 SNP 모델로 변환을 위한 관점을 제조명하다. 동일한 관점에서 두 모델의 상태표현이 같도록 DEVS 모델이 SPN 모델로 표현됨을 보이는 변환이론을 제시하고 변환이론을 바탕으로 모델 변환과정을 제시한다. 모델 변환이론과 변환고정을 기본으로 타당성 검사를 위한 새로운 동질함수(homogeneous function)를 정의하고 이와 함께 SPN 모델의 특성을 이용하여 DEVS 모델에 대한 타당성 검사 방법을 새롭게 제안한다.

  • PDF

Estimation of Shrinkage Behavior and Stress of Expansive Concrete on Buildings (실부재에 있어서의 팽창콘크리트의 수축거동 및 응력예측)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi;Hama, Yukio
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.23-31
    • /
    • 2016
  • In this study, Based on the constructed model in advance, we suggested the macro prediction method of shrinkage cracking reduction in concrete using expansive additives, and the method was verified. In addition, extended application of model to building, the strain of walls and slabs on building was estimated by model and the generated stress was estimated thereby comparing this with the result by existing method to verify the model's applicability and the validation of our model. From examination of theoretical model for concrete using expansive additives to examination for building levels, furthermore suggests the macro prediction method for shrinkage reduction and cracking control effects was can be supply practical data in application of expansive concrete and utility in the future.

Bankruptcy prediction using ensemble SVM model (앙상블 SVM 모형을 이용한 기업 부도 예측)

  • Choi, Ha Na;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1113-1125
    • /
    • 2013
  • Corporate bankruptcy prediction has been an important topic in the accounting and finance field for a long time. Several data mining techniques have been used for bankruptcy prediction. However, there are many limits for application to real classification problem with a single model. This study proposes ensemble SVM (support vector machine) model which assembles different SVM models with each different kernel functions. Our ensemble model is made and evaluated by v-fold cross-validation approach. The k top performing models are recruited into the ensemble. The classification is then carried out using the majority voting opinion of the ensemble. In this paper, we investigate the performance of ensemble SVM classifier in terms of accuracy, error rate, sensitivity, specificity, ROC curve, and AUC to compare with single SVM classifiers based on financial ratios dataset and simulation dataset. The results confirmed the advantages of our method: It is robust while providing good performance.