고성능 슈퍼스칼라 프로세서에서 값 예측 실패 시에 잘못 예측된 값을 사용하여 모험적으로 수행된 명령들만을 순차적으로 취소하고 복구한 후에 재이슈하는 값 예측 실패 복구 메커니즘을 제안한다. 제안된 복구 방식은 값 예측이 틀린 종속명령만을 선택적으로 재이슈하여 불필요한 재이슈를 줄임으로써 값 예측 실패 시에 손실을 줄인다. 또한 기존의 방식들처럼 잘못 예측된 명령에 종속적인 명령들의 한번에 병렬로 검색하지 않고 명령들의 종속체인을 따라 순차적으로 검색함으로써 프로세서의 클럭 사이클에 영향을 미치지 않으면서 하드웨어의 구현의 복잡성을 줄인다.
프로그램의 실행시간은 캐쉬메모리의 효율적 사용과 밀접한 관계가 있다. 특히 간섭 실패는 프로그램의 성능에 큰 영향을 미치지만 나타나는 형태가 불규칙적이므로 예측하기가 매우 어렵다. 본 논문에서는 직접 사상 캐쉬전략을 사용한 완전 중첩 루프 내 배열의 캐쉬 실패율(cache miss ratio)을 구하는 분석적 모델을 제시한다. 논문에서 제시한 모델을 임의의 캐쉬 위치에 각 배열이 접근한 시간을 기반으로 다음주기에서 캐쉬 실패의 발생 여부를 예측하는데, 간섭으로 발생한 캐쉬 실패 개수에 대해 기존에 제시된 모델보다 더 빠르고 정확한 예측이 가능하다. 특히, 한문장의 수행시간 예측시간은 배열의 크기와 독립적이기 때문에, 전체 프로그램의 수행시간 예측은 배열의 크기 및 문장의 반복 회수 배만큼 빠른 결과를 보여준다. 본 모델은 프로그램의 성능예측 뿐만 아니라 데이터 지역성의 최적화, 캐쉬 구성, 스케쥴링 등에서도 이용 가능하다.
고성능 슈퍼스칼라 프로세서에서 값 예측(value prediction) 방식은 명령의 결과 값을 미리 예측하고, 이 후 데이타 종속 관계가 있는 명령들에게 값을 조기에 공급함으로써 이들 명령들을 모험적으로 실행하여 성능을 향상시키는 방식이다. 값 예측으로 성능을 향상시키기 위해서는 예측 실패 시에 효율적으로 복구하는 과정이 필수적이다. 본 논문에서는 값 예측 실패 시에 잘못 예측된 값을 사용하여 모험적으로 수행된 명령들만을 순차적으로 취소하고 복구한 후에 재이슈하는 값 예측 실패 복구 메커니즘(value misprediction recovery mechanism)을 제안한다. 제안된 복구 방식은 한번에 모든 종속명령들을 검색하지 않음으로써 파이프라인을 정지시키지 않는다. 즉, 파이프라인이 진행되는 순서에 따라 순차적으로 값 예측이 틀린 종속명령만을 선택적으로 취소하고 재이슈하여 불필요한 취소와 재이슈를 줄임으로써 값 예측 실패 시에 손실을 줄인다.
조건 분기예측실패는 많은 사이클을 낭비시키며, 비순서적 실행을 방해하고, 잘못 예측된 명령어들을 수행하게 되므로 전력을 낭비한다. gshare와 GAg같은 전역 히스토리를 기반으로 하는 예측기에서는 히스토리의 명령어 완료시간 갱신(commit update)에 의해 많은 분기예측실패가 발생한다. 이를 위해 히스토리를 모험적으로 갱신하고, 분기예측실패 시 히스토리를 복구시키는 메커니즘에 관한 연구들이 제시되었다. 본 논문에서는 기존 분기예측기에 age_Counter를 추가하여 미해결 분기명령어 수를 저장하며, 이를 분기예측실패 후 분기 히스토리 레지스터를 복구하는데 사용하는 간단한 복구 메커니즘을 제안한다. SimpleScalar 3.0/PISA 툴셋과 SPECINT95 벤치마크 프로그램에서 시뮬레이션 한 결과, 제안된 복구 메커니즘은 GAg와 gshare 예측기에서 예측정확도는 각각 $9.21\%$와 $2.14\%$가 개선되었고, IPC는 $18.08\%$와 $8.75\%$ 개선되었다.
조건 분기예측은 프로세서 성능 개선을 위한 중요한 기술이다 그러나, 분기예측실패는 많은 사이클을 낭비시키며, 비순서적 실행을 방해하고, 잘못 예측된 명령어들을 수행하게 되므로 전력을 낭비한다. 따라서 높은 정확도를 갖는 분기 예측기는 좋은 성능을 갖는 프로세서를 위해 중요하다. gshare와 GAg같은 전역 히스토리를 기반으로 하는 예측기에서는 히스토리의 명령어 완료시간 갱신 (commit update)에 의해 많은 분기예측실패가 발생한다. 그런 문제를 해결하기 위해 히스토리를 모험적으로 갱신하고, 분기예측실패 시 히스토리를 복구시키는 메커니즘에 관한 연구의 필요성이 제시되었고, 연구 되었다. 본 논문에서는 분기예측실패 발생 후 분기 히스토리를 복구하는 간단한 복구 메커니즘을 제안한다. 제안한 복구 메커니즘은 기존 분기예측기에 age_counter를 추가하고 분기 히스토리 레지스터 크기를 2배로 확장시킨다. age_counter는 미해결 분기명령어 수를 저장하며, 분기예측실패 후 분기 히스토리 레지스터를 복구하는데 사용한다. Simplescalar 3.0/PISA 툴셋과 SPECINT95 벤치마크 프로그램에서 시뮬레이션 한 결과, 제안된 복구 메커니즘을 gshare와 GAg 예측기에 적용하였을 때 예측 정확도와 프로세서 성능을 개선시킬 수 있었음 을 보여준다. GAg와 gshare 예측기에서 예측정확도는 각각 9.21$\%$와 2.14$\%$가 개선되었고, WC는 18.08$\%$와 8.75$\%$ 개선되었다.
인공위성이 더욱 복잡해 감에 따라 예측할 수 없는 실패의 발생은 설계의 부적당성, 경험 부족, 문제인식 부족, 빈약한 품질제어 능력, 부적당한 시험 또는 작업자의 실수 등 때문에 늘어나고 이들은 위성의 임무 수명을 단축시킬 수 있다. 본 고에서는 위성의 일반적인 실패유형과 임무수명 인자에 대해 검토하고, 지구 및 해양관측 임무를 갖고 있는 태양동기 저궤도위성인 다목적 실용위성에 대한 임무수명인자를 조사하고 실제 예상되는 위성의 임무수명을 예측하였다. 임무수명의 예측 시 랜덤하게 발생하는 실패에 의한 수명의 중단은 예측할 수 없는 것이기 때문에, 여기서는 주로 예측이 가능한 마모에 의한 대표적인 임무수명 인자 예를 들어, 전력 버짓, 추진제 버짓, 배터리 충 방전 사이클, 복사환경의 영향, 탑재체의 신뢰도, 단일 점 실패, 위성 여유 분을 등을 조사하고 개략적인 수명을 예측하였다.
SRK-BB(Skill-, Rule-, Knowledge-Based Behavior)는 주어진 사건을 처리할 때 인간이 행하는 행동을 체계적으로 식별하기 위한 하나의 이론이다. 이러한 SRK-BB에 대한 결과는 주어진 임무에 대한 '성공'과 '실패'로 나타낼 수 있다. 만약, 어느 사건에 대한 SRK-BB를 식별할 수 있고, 이에 대한 '성공/실패'의 결과를 알 수 있다면, SRK-BB를 이용하여 이들 사이에 연계된 확률적인 관계를 정립할 수 있다. 한편, 해양사고의 결과를 분석한 해양안전심판원의 재결서 또는 재결요약서에는 다양한 사고(즉, 실패한 사건)에 대해서 해기사가 어떠한 행동을 취했는지 상세하게 기록되어 있다. 이러한 해양안전심판원의 자료를 분석하면 실패한 해양사고에 대한 방대한 해기사의 SRK 분포를 확보할 수 있다. 본 연구의 목적은 다양한 해양사고에 나타난 해기사들의 행동을 SRK-BB로 식별한 후 해기사들이 추후 야기할 수 있는 인적오류를 예측하기 위한 모델 구축에 있다. 인적오류 모델을 구축하기 위해서는 우선 해양사고에 포함된 SRK 분포 분석이 필요하고, 시스템적인 입출력 관계를 통해서 SRK에 의한 인적오류의 결과를 예측하기 위한 예측 모델이 필요하다. 본 연구에서는 해기사의 인적오류에 의한 사고를 어떻게 SRK 분포를 이용하여 예측할 수 있는지에 대한 개념을 설명하고, 해양사고 데이터에서 획득한 SRK 분포의 의미와, SRK 분포를 이용하여 어떻게 해기사가 야기할 사고를 예측할 수 있는지에 대한 연구접근 방법을 소개하고자 한다.
전통적으로 소프트웨어 프로젝트는 납기지연, 예산초과, 높은 결함율 등으로 타 산업분야의 프로젝트에 비해 매우 높은 실패율을 기록하고 있는 것으로 알려져 있다. 이 같은 소프트웨어 프로젝트의 실패원인에 대한 많은 연구결과는 소프트웨어가 갖고 있는 범위와 요구사항 정의의 어려움, 비가시성으로 인한 초기견적의 부정확성, 역시 가시성의 부족으로 진행상황파악의 어려움에 따른 진척관리의 애로, 더욱 큰 문제는 변경의 용이성과 변경에 대한 추적의 어려움 등을 지적하고 있다. 실패한 프로젝트들의 내용을 보면 대부분 계획의 부정확성이나 위험에 대한 대처의 부족 또는 진행 중 발생하는 변경에 대한 통제의 실패에서 찾아 볼 수 있다. 정확한 예측과 위험 예방 그리고 효과적인 통제대책이 소프트웨어 프로젝트를 성공으로 이끄는 3두 마차라는 지적이다. 정확한 예측의 핵은 프로젝트 산출물인 제품에 대한 정확한 규모측정에 있고, 위험 예방은 복잡도가 높거나 불확실성이 높은 컴포넌트의 자원소요에 대한 예측과 이에 대한 준비의 소홀에서 찾을 수 있으며, 효과적인 통제대책은 프로젝트 관리 프레임워크가 튼튼하지 못하거나 이의 준수를 위한 노력의 결핍에서 찾을 수 있을 것이다. 본 논문에서는 이 3두 마차 중 가장 근간이 되고 시발점이 되는 제품의 규모에 대한 예측에 초점을 맞추어 규모측정에 가장 합리적이고 객관적이며 실용성이 높다고 현재 국제적으로 높은 평가를 받고 있는 기능점수를 프로젝트 관리에 어떻게 활용해야 프로젝트를 성공시킬 수 있을 지의 방법에 대한 검토 결과를 제시고자 한다.
무선 통신망에서 다양한 요구의 QoS(Quality of Service)를 보장하고 한정된 대역폭을 효과적으로 사용하기 위한 기법에는 이동성 예측 기법과 채널 할당 기법이 있다. 이러한 이동성 예측 기법들 중에서는 가장 최근에 제안되었으며, 셀 내부의 이동 경로를 저장하는 방법을 사용하는 Detailed-ZMHB 알고리즘이 가장 우수한 성능을 보인다. 또한, 여러 채널 할당 기법 중에서 핸드오프 호(Handoff Call)의 접속 실패율을 줄이기 위하여, 핸드오프 호에 우선순위를 두어 다소의 신규 호 블록킹율을 감수하고, 핸드오프 호의 접속 실패율(Dropping Probability)을 낮추는 방법들이 제안되었다. 특히, CDMA(Code Division Multiple Access) 시스템에서의 소프트 핸드오프의 경우, 신호의 세기에 따라 인접한 셀 중 두 개를 선택하여 채널을 예약하는 방법을 사용한다. 본 논문에서는 핸드오프 호의 접속 실패율을 줄이기 위하여, 예측 알고리즘에서 사용하는 이동 경로 저장 방법을 이용하는 새로운 채널 예약 기법을 제안한다. 그 결과로, 본 논문에서 제안한 채널 예약 기법이 기존의 기법보다 핸드오프 호의 접속 실패율이 약 67-71$\%$정도 낮다.
본 논문에서는 이동 통신 시스템 내에 존재하는 이동성 데이타베이스의 실패 처리를 위한 이동성 학습과 예측에 기반한 회복 기법을 제안한다. 이동 통신 시스템에서 이동성 데이타베이스는 사용자들에게 빠른 연결을 제공하기 위해 사용자의 현재 위치 정보를 유지해야 한다 그러나, 이동성 데이터베이스의 실패는 사용자의 위치 정보를 잃어버리게 만든다. 결과적으로, 명백한 회복 과정 없이는 실패 상황에서 사용자의 호 요청은 거절된다. 따라서, 이동성 데이타베이스에 실패가 발생하였을 때, 실패에 효과적으로 대처할 수 있는 명백한 회복 기법이 사용자들에게 연속적인 서비스 가용성을 보장해 주기 위해서 필요하다. 본 논문의 회복 기법에서 사용되는 이동성 학습과 예측은 이동성 데이타베이스의 실패 후 시스템에 의해서 사용자의 위치를 파악하기 위한 기능을 담당한다. 실패 없는 연산 동안 사용자의 이동 패턴은 뉴로-퍼지 추론 시스템에 의해서 학습되며, 학습된 위치 정보는 실패 후 잃어버린 사용자의 위치를 파악하기 위해서 사용된다. 따라서, 본 논문의 회복 기법은 백업 과정과 검사점 정보를 저장하기 위해 필요한 부가적인 저장 공간을 요구하지 않기 때문에 검사점을 사용하는 이전의 접근방법과 다르다. 게다가, 성능 분석을 위한 시뮬레이션은 본 논문의 회복 기법이 실패 후 잃어버린 사용자의 위치 정보를 회복하는데 소요되는 비용을 검사점에 기반한 회복 기법과 비교하여 상당히 줄일 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.