• Title/Summary/Keyword: 예측성능 개선

Search Result 977, Processing Time 0.032 seconds

Performance Analysis of Improved Adaptive Predictive Filter to Generate Reference Signal in Active Power Filter (능동전력필터의 기준신호발생을 위한 개선된 적응예측필터의 성능 분석)

  • Bae Byung-Yeol;Baek Seung-Taek;Han Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.592-601
    • /
    • 2004
  • The performance of active power filter depends on the inverter characteristic, the control method, and the accuracy of reference signal generator. The accuracy of reference signal generator is the most critical item to determine the performance of active power filter. This paper introduces a novel reference signal generator composed of improved adaptive predictive filter. The performance of proposed reference signal generator was verified by means of simulation with MATLAB. The application feasibility was evaluated by building and experimenting a single-phase active power filter based on the proposed reference generator, which was implemented in the DSP(digital signal processor) TMS320C31. Both simulation and experimental results confirm that the proposed reference signal generator can be utilized for the active power filter.

Call Admission Control Using Adaptive-MMOSPRED for Resource Prediction in Wireless Networks (무선망의 자원예측을 위한 Adaptive-MMOSPRED 기법을 사용한 호 수락제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2008
  • This paper presents adaptive-MMOSPRED method for prediction of resource demands requested by multimedia calls, and shows the performance of the call admission control based on proposed resource prediction method in multimedia wireless networks. The proposed method determines (I-CDP) random variables of the standard normal distribution by using LMS algorithm that minimize errors of prediction in resource demands, while parameters in an existing method are constant all through the prediction time. Our simulation results show that prediction error in adaptive-MMOSPRED method is much smaller than in fixed-MMOSPRED method. Also we can see via simulation the CAC performance based on the proposed method improves the new call blocking performance compared with the existing method under the desired handoff dropping probability.

  • PDF

Improved Intraframe Coding Method based on H.263 Annex I (H.263 Annex I 기반 화면내 부호화 기법의 성능개선)

  • 유국열
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.213-216
    • /
    • 2001
  • The H.263 Annex I method for the intraframe coding is based on the prediction in DCT domain, unlike JPEG, MPEG-1, and MPEG-2 where the intraframe coding uses block DCT, independent of the neighboring blocks. In this paper, we show the ineffectiveness of H.263 Annex I prediction method by mathematically deriving the spatial domain meaning of H.263 Annex I prediction method. Based on the derivation, we propose a prediction method which is based on the spatial correlation property of image signals. From the experiment and derivation, we verified the proposed method.

  • PDF

Performance Analysis of Deep Reinforcement Learning for Crop Yield Prediction (작물 생산량 예측을 위한 심층강화학습 성능 분석)

  • Ohnmar Khin;Sung-Keun Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.99-106
    • /
    • 2023
  • Recently, many studies on crop yield prediction using deep learning technology have been conducted. These algorithms have difficulty constructing a linear map between input data sets and crop prediction results. Furthermore, implementation of these algorithms positively depends on the rate of acquired attributes. Deep reinforcement learning can overcome these limitations. This paper analyzes the performance of DQN, Double DQN and Dueling DQN to improve crop yield prediction. The DQN algorithm retains the overestimation problem. Whereas, Double DQN declines the over-estimations and leads to getting better results. The proposed models achieves these by reducing the falsehood and increasing the prediction exactness.

Adaptive Motion Vector Prediction algorithm for Video Coding (동영상 압축 방식을 위한 적응 움직임 벡터 예측 방식)

  • 정종우;김지희;홍민철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1936-1939
    • /
    • 2003
  • 본 논문에서는 최소 계승 선형 예측 방식의 에지 방향성을 이용하여 공간영역에서의 다양한 움직임 벡터 예측기를 적응적으로 설정하는 방식을 제안하고자 한다. 적응 움직임 예측 방식은 동영상 움직임 벡터가 국부 통계적인 특성의 돌연한 변화로 특징지어진다는 것을 바탕으로 예측기를 움직임 벡터의 통계적인 특성에 따라 전환하는 방식이다 본 논문에서 사용된 최소 계승 예측 방식은 움직임 벡터의 다양한 통계적 특성을 이용하여 국부적으로 움직임 벡터 예측 계수를 최적화하지만 최적화 과정에서 매우 큰 계산량을 갖게 됨으로 실제적으로 적용하기가 어려웠다. 그러므로 본 논문에서는 최소 계승 예측 방식을 에지 방향성의 관점에서 재해석하여 적응적으로 움직임 벡터 예측기를 개선하므로 계산량을 줄이면서 일정한 성능을 유지함을 확인 할 수 있었다.

  • PDF

Adaptive Motion Vector Prediction for Video Coding (동영상 압축 방식을 위한 적응 움직임 벡터 예측 방식)

  • 김지희;홍민철
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.45-48
    • /
    • 2002
  • 본 논문에서는 최소 계승 선형 예측 방식의 에지 방향성을 이용하여 공간영역에서의 다양한 움직임 벡터 예측기를 적응적으로 설정하는 방식을 제안하고자 한다. 적응 움직임 예측 방식은 동영상 움직임 벡터가 국부 통계적인 특성의 돌연한 변화로 특징지어진다는 것을 바탕으로 예측기를 움직임 벡터의 통계적인 특성에 따라 전환하는 방식이다. 본 논문에서 사용된 최소 계승 예측 방식은 움직임 벡터의 다양한 통계적 특성을 이용하여 국부적으로 움직임 벡터 예측 계수를 최적화 하지만 최적화 과정에서 매우 큰 계산량을 갖게 됨으로 실제적으로 적용하기가 어려웠다. 그러므로 본 논문에서는 최소 계승 예측 방식을 에지 방향성의 관점에서 재해석하여 적응적으로 움직임 벡터 예측기를 개선하므로 계산량을 줄이면서 일정한 성능을 유지함을 확인 할 수 있었다.

  • PDF

A Novel Approach to Improve Branch Prediction Accuracy by Neural Network Information (신경망을 이용한 분기 예측의 개선)

  • Kwak, Jong Wook;Kim, Ju-Hwan;Jhon, Chu Shik
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.1651-1654
    • /
    • 2004
  • 파이프라인과 슈퍼스칼라 방식이 일반화된 시스템 구조 하에서, 분기 명령어는 시스템 전체적인 성능에 중요한 영향을 미친다. 특히 분기 예측이 실패했을 경우, 잘못된 분기 예측으로 인한 페널티가 발생한다는 점에서 분기 예측의 정확도에 대한 중요성은 크다고 할 수 있다. 본 논문에서는 분기 예측의 정확도를 높이기 위해서, 분기 예측과 관련된 신경망을 구축하여 이를 통해 분기 예측에 필요한 각 요소별 가중치의 변화를 분석하고, 이를 분기 예측에 새롭게 반영하고자 한다. 본 논문에서는 이를 위해 실행 구동 방식의 시뮬레이터인 SimpleScalar를 통하여 모의 실험을 수행하였으며, 실험 결과 본 논문에서 제시한 새로운 기법이 기존의 일반적인 이단계 적응형 분기 예측 기법이나 gshare 기법에 비하여 더 우수한 결과를 보였다.

  • PDF

Improvement of Reservoir Turbidity Prediction Model with Considering Particle Sizes of Suspended Sediments (부유물질 크기분포를 고려한 저수지 탁도 예측 모델 개선)

  • Lee, Heung-Soo;Chung, Se-Woong;Liu, Huan;Jeong, Hee-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1378-1383
    • /
    • 2008
  • 댐 저수지에서 지속적인 탁도를 유발하는 물질은 쉽게 침강되지 않는 $20{\mu}m$이하의 작은 부유물질(SS)이며, 가을 수직혼합 시기까지 침강되지 않은 부유물질은 다시 재부상하는 경우도 발생한다. 저수지내 탁수의 장기 체류는 수자원 이용과 하류하천의 수생태계에 다양한 문제를 야기하고 있어 일부 댐에서는 실시간 탁도 감시 장치를 설치하고 취수설비를 개선하는 등의 탁수저감 대책의 노력을 기울이고 있으나, 시설의 최적 운영을 지원할 수 있는 탁수 거동 및 탁도 예측에 관한 연구는 아직 부족한 실정이다. 특히, 탁도는 물 속에 존재하는 부유물질의 광학적 특성(light attenuation)을 나타내는 지표로써 SS와는 물리적인 물성이 달라 실시간 계측자료(탁도)와 모델의 모의 변수(SS)가 다른 문제점 때문에 모델링에 어려움이 있었다. 지금까지 탁도 모델링은 대부분 탁도와 SS의 상관관계를 이용하는 방법을 사용하였다. 그러나 이 방법은 탁도-SS 관계가 실측지점과 입자크기분포에 따라 달라지는 특성 때문에 변환과정에 예측결과의 불확실성이 내재한다는 지적을 받아왔다. 본 연구의 목적은 저수지로 유입한 탁수의 보다 과학적이고 정확한 탁도 예측을 위해 탁도를 유발하는 부유물질의 입자크기 분포와 공간적으로 변하는 탁도-SS의 상관관계를 고려할 수 있는 표준화된 탁도 모델링 방법을 개발하고, 실측자료를 사용하여 제시된 탁도 모델링 방법의 예측 성능을 평가하는데 있다. 부유물질의 이송-확산-침강 모델은 2차원 횡방향 평균 수리 모델과 연결(coupling)되어 수행되며, 저수지 수면을 통한 열 교환, 바람과 바닥 조도에 의한 난류혼합과 성층해석, 하천 유입수의 저수지내 밀도류 유동, 그리고 입자 크기별 부유물질의 독립침강을 해석한다. 부유입자의 크기분포와 공간적으로 서로 다른 탁도-SS 관계를 고려한 탁도 예측모델은 기존의 탁도를 종속변수로 사용한 예측 방법 또는 단일 입자크기를 사용한 모델보다 개선된 모의결과를 보여주었다. 본 연구에서 제시된 탁도 예측 알고리즘은 실시간 탁수감시와 예측 모델링, 그리고 댐 방류수 탁도 관리를 위한 선택취수 설비의 운영을 위한 의사결정지원시스템에 적용 가능할 것으로 사료된다.

  • PDF

Development of Performance-Based Seismic Design of RC Column Using FRP Jacket by Displacement Coefficient Method (FRP 보강 철근콘크리트기둥의 변위계수법에 의한 내진성능설계기법 개발)

  • Cho, Chang-Geun;Ha, Gee-Joo;Bae, Su-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.491-497
    • /
    • 2007
  • In the current research, the scheme of displacement-based seismic design for seismic retrofit of concrete structures using FRP composite materials has been proposed. An algorithm of the nonlinear flexural analysis of FRP composite concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. An algorithm for performance-based seismic retrofit design of reinforced concrete columns with FRP jacket has been newly introduced to modify the displacement coefficient method used in reinforced concrete structures. From applications of retrofit design, the method are easy to apply in the practice of retrofit design and give practical prediction of nonlinear seismic performance evaluation of retrofitted structures.

Improvement of Depth Video Coding by Plane Modeling (평면 모델링을 통한 깊이 영상 부호화의 개선)

  • Lee, Dong-Seok;Kwon, Soon-Kak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.5
    • /
    • pp.11-17
    • /
    • 2016
  • In this paper, we propose a method of correcting depth image by the plane modeling and then improving the coding performance. We model a plane by using the least squares method to the horizontal and vertical directions including the target pixel, and then determine that the predicted plane is suitable from the estimate error. After that, we correct the target pixel by the plane mode. The proposed method can correct not only the depth image composed the plane but also the complex depth image. From the simulation result that measures the entropy power, which can estimate the coding performance, we can see that the coding performance by the proposed method is improved up to 80.2%.