• Title/Summary/Keyword: 예상환경온열감

Search Result 34, Processing Time 0.019 seconds

Evaluation of Comfort Performance for Modernized Hanok: Targeting Hanok Residence at the Jamjeong-Haetsal Village in Hwasun, Jeonnam Province (신한옥의 쾌적성능 평가: 전남 화순 잠정햇살마을 한옥단지를 대상으로)

  • Choe, Seung-Ju;Lee, Mihyang;Kim, Jae-Hyang;Han, Seung-Hoon
    • Land and Housing Review
    • /
    • v.12 no.2
    • /
    • pp.99-108
    • /
    • 2021
  • With increasing interest in living in hanoks, there's a growing need for more quantitative data on the thermal comfort performance of modern hanoks. With that in mind, this research project studied a modern hanok located in Jamjeong-Haetsal Village in Hwasun, Jeollanam Province as a case study to evaluate the Predicted Mean Vote (PMV) of modernized hanoks. Based on environmental data collected at the hanok and computer simulation both Life-Cycle PMV (L.C.PMV) and Normal PMV (N.PMV) were calculated for the hanok. Study results showed that during the summer and winter seasons the PMV and heat index at major heat and major cold weather points significantly deviated from the comfort zone. The rate of change in PMV was also greater in the winter than in the summer. The study found that the modern hanok lacks proper thermal insulation for maintaining thermal comfort.

An Analysis of Human Reaction & IAQ Analysis by Changing the Floor Temperature & Ventilation (바닥온도와 실내 환기에 따른 인체반응 및 실내공기질 분석)

  • Lee, Ji-Weon;Chin, Kyung-Il;Kim, Se-Hwan
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2015
  • Recently many buildings are airtight, deterioration takes the high stage. As this room ventilation is increasingly difficult, the importance of indoor air was emphasized. And Got a few provisions on the indoor ventilation, the building is used for other purposes also requires a lot of careful research. In this study, consisting of floor heating ventilation in the room and wants to know the impact on the human body react with the carbon dioxide concentration in the indoor air were investigated PMV. We have get the data through the experimental study like this. It can be inferred correlations of ventilation and temperature according to human comfort that you should consider when using the work of residential buildings in accordance with the changing social conditions and social. It is also determined that in the future through additional experiments related data can be established basic experimental data.

Experimental Analysis of Thermal Comfort of an Office Space for Ceiling and Floor Supply Air Conditioning Systems (사무실 공간의 냉방시 천장 및 바닥 급기 공조 방식에 따른 열환경 평가 실험)

  • Cho, Yong;Kwon, Hyurk-Seung;Kim, Sung-Hyun;Kim, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.810-816
    • /
    • 2000
  • Thermal comfort plays an important role in modern office buildings. Four major factors affecting thermal comfort are air temperature, velocity, humidity and radiation temperature. Distribution of these thermal factors in indoor space depends largely on the air flow which is related to the method of supplying and extracting air. In this study, an experimental analysis on indoor thermal comfort is conducted to study the difference between a ceiling supply cooling system and a floor supply one. The two cooling systems are applied to an office space during summer season and the distributions of temperature, velocity, radiation temperature and PMV are measured. Results show that the floor supply cooling system is superior in terms of thermal comfort and energy saving. Studies need to be done, however, to reduce the vertical temperature difference of a floor supply air conditioning system.

  • PDF

Numerical Analysis of Thermal Environments and Comfort for Local Air Conditioning System (수치해석에 의한 국부냉방시스템의 온열환경 및 쾌적성 분석)

  • 엄태인;경남호;신기식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.318-328
    • /
    • 2003
  • Numerical simulation using computational fluid dynamics (CFD) is performed to calculate the velocities and temperature profiles of air in adjacent to a worker within the individual local air conditioning system. The calculation domain is the space of ㄴ between walls and a worker in the climate room. The fresh air is supplied from the three different inlets located on the right, left and center wall in the climate room. In this study, the calculated data of velocities and temperature profiles of air in the nearest the skin of a worker are used to calculate the PMV (Predicted Mean Vote) for evaluation of thermal comfort of a worker in the local air conditioning system. Because the data of veto-cities temperature profiles of air in adjacent to a worker and the PMV of a worker are the design parameters of the local air conditioning system. The results of calculation show that the fresh air velocity and injection position are closely related to the PMV value. In individual air condition system of ㄴ, the appropriate PMV are obtained when the fresh air velocity and position are 1.0 m/s, throat of a worker and are 1.5 m/s, head of a worker, respectively. The method of numerical calculation is effective to obtain the optimum velocity and position of the fresh air for optimum the PMV and energy saving in individual local air conditioning system.

Analysis of Comfortable Environment in the Classroom with Humidification and Ventilation in Winter (겨울철 가습 및 환기에 따른 교실내 쾌적환경 분석)

  • Sheng, Nai-Li;Cheong, Seong-Ir;Lee, Jae-Keun;Park, Jong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1213-1219
    • /
    • 2008
  • This experimental study was to analyze thermal comfort and indoor air quality(IAQ) with ventilation and humidification in the classroom when system air conditioner was operated. The thermal comfort was estimated by the PMV index and the concentration of $CO_2$ and total suspended particle(TSP) were measured and compared with ventilation and humidification. As a result, the class room temperature distribution was $2{\sim}5^{\circ}C$ low during operating ventilation system and humidification. At 60% RH, PMV values of measuring points were ranged from +0.5 to -0.5 indicating optimal the range of thermal comfort. The average concentration of $CO_2$ gas and TSP were reduced 645 ppm, 0.17 mg/$m^3$ respectively, during operating the ventilation system. From the results, to maintain comfortable environment in the heated classroom, the ventilation and humidification were needed in winter season.

  • PDF

A Field Measuring Study on the Thermal Environment of Human Surrounding in the Classroom Equipped with Ceiling Unit (천장형 유닛을 설치한 교실 내의 인체 주변 온열환경에 관한 실측연구)

  • Cho Sung-Woo;Im Young-Bin;Lee Kyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.240-246
    • /
    • 2006
  • This paper performed to investigate on vertical temperature distribution, effective draft temperature (ETD) and PMV (Predicted Mean Vote) in the classroom, which is located YangSan city (Kyungsangnam-Do), Korea, is equipped with ceiling unit. The vertical temperature difference between F.L+10 cm (ankle) and F.L+120 cm (neck) of a measuring point which is adjacent corridor in the classroom showed about $1^{\circ}C$ but of measuring point which is adjacent outdoor expressed up to $4^{\circ}C$, The effective draft temperature (ETD) is -2.3 and -0.52 and 0.67 at near ceiling unit but is 1.2 and 3.3 at far from ceiling unit. The PMV of total classroom showed the range of 'Cold' and 'Slightly Cold.' Therefore, to achieve comfort condition in the classroom is equipped with ceiling unit, the location of ceiling unit and discharge angle and discharge distance from ceiling unit are very important elements.

A Study of Thermal, Air-flow and Humidity Conditions in an Indoor Swimming Pool (실내수영장의 열, 기류 및 습도환경에 관한 연구)

  • 강석윤;이태구;문종선;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.683-689
    • /
    • 2003
  • The thermal comfort of an indoor swimming pool is different from that of general indoor space because of the characteristics of large space and the wear conditions of swimmers. Dew condensation by humid air not only makes mold on the floor, wall and roof but also decreases the durability of buildings by penetrating into their structures. In this study, the characteristics of the flow field, the temperature field and the humidity distribution in an indoor swimming pool have been examined by the numerical method to estimate the level of thermal comfort and the generation rate of dew condensation. The results showed that the dew condensation regions were spread widely at the eastern parts of the swimming pool due to the insufficient air flow rate with low velocity and temperature. To prevent the generation of dew condensation in a region, a sufficient warm air flow rate should be supplied to make an air mixing. The values of PMV at horizontal plane of 1.5 m height have the range of -1.0∼1.2, which means the suitable level for swimmers.

A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC (HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구)

  • Yoon, Seong Hyun;Park, Jun Yong;Son, Deok Young;Choi, Yunho;Park, Kyungseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.979-988
    • /
    • 2014
  • Recently, the interest in the thermal comfort is ever increasing as the time people stay in the automobile is gradually increasing. So far, however, the cooling performance of the HVAC(heating and ventilation air conditioning) system is evaluated by thermal environment criteria such as indoor air velocity and temperature, not by a thermal comfort index. Furthermore, the precise criteria has not been established yet when the thermal comfort for the automobile is evaluated using numerical analysis. In this study, the numerical analysis of automobile indoor thermal comfort according to various parameters such as HVAC operating mode, airflow, passenger boarding conditions is performed during the HVAC system's initial operating time(20 minutes). The solar ray tracing model and S2S radiation model are used and validated to simulate an external heat source. Based on this study, an evaluation model which can predict the thermal comfort index for the combination of the above parameters is presented.

Evaluation of Annual Indoor Environment Quality in Hospitals using Various Comfort-related Factors (보건의료시설의 실내 예상 평균 온열감(PMV), 이산화탄소 농도, 소음도, 조도의 통합실내쾌적도(IEQh)를 통한 연간 실내 쾌적도 평가)

  • Lee, Boram;Lee, Daeyeop;Ban, Hyunkyung;Lee, Sewon;Kim, KyooSang;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.214-222
    • /
    • 2017
  • Objectives: A hospital is a complex building that serves many different purposes. The indoor environment in a hospital plays a major role in patient well-being and the work efficiency of the hospital staff. This study was conducted to evaluate overall comfort in two major hospitals over the course of one year. Methods: Various indoor environmental conditions were measured in two general hospitals for one year (April 2014 to April 2015). Monitoring alternated between the hospitals at one month per respective monitoring session. The indoor air temperature, relative humidity (RH), mean radiant temperature and air velocity were measured in order to calculate the predicted mean vote (PMV). Carbon dioxide concentration, noise level and illumination level were concurrently measured and applied to the overall IEQ acceptance model for the hospitals (IEQh). Results: The IEQh at the two general hospitals was different at five spaces within a building. The IEQh for summer and winter were significantly different. Real-time IEQh demonstrated that indoor comfort was affected by the hospital's operating hours due to operation of the HVAC system. The percentage of indoor comfort in the hospitals was higher using PMV than IEQh. Conclusion: IEQh in the hospitals was different at locations with different purposes. Indoor comfort assessment using IEQh was stricter than with PMV. Additional research is needed in order to optimize the IEQh model.

Thermal Comfort and the Physiological and Psychological Effects of Spending Time in Broad-Leaved Forests in Summers (여름철 활엽수림에서의 휴식이 온열환경 쾌적성 및 인체의 생리ᐧ심리적 반응에 미치는 영향)

  • Juhyeon Kim;Injoon Song;Choyun Kim;Dawou Joung;Yunjeong Yi;Bum-Jin Park;Chorong Song
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.544-553
    • /
    • 2023
  • The purpose of this study was to reveal the thermal comfort and physiological and psychological effects of spending time in broad-leaved forests in suumer. Thirty-one university students (with an average age of 21.4 ± 2.1 years) participated in the study, and a within-subjects experimental design methodology was used. The participants moved to an experimental site (with a crown closure of 76.6%) or a control site (25.9%), sat on a chair to eliminate the impact of movement, and rested for 5 minutes with closed eyes. At this time, thermal comfort, heart rate variability, heart rate, and forehead temperature were continuously measured. After that, blood pressure and pulse rate were measured, and a subjective evaluation was conducted. As a result, spending time at an experimental site showed a statistically significant decrease in the predicted mean vote and the percentage of dissatisfied values, enhancement of parasympathetic nerve activity, decrease of forehead temperature, diastolic blood pressure, heart rate, pulse rate, and improvement of personal thermal sensation (thermal sensation vote and comfort sensation vote). In conclusion, it was found that a forest with high crown closure reduces thermal stress and induces physiological and psychological relaxation.