• Title/Summary/Keyword: 영한 번역 품질 평가

Search Result 9, Processing Time 0.01 seconds

Enhancement of English-to-Korean Translation Quality by Korean Style Generation Patterns (한국어 스타일 생성 패턴에 의한 영한 번역 품질 개선)

  • Choi, Sung-Kwon;Hong, Mun-Pyo;Park, Sang-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.235-240
    • /
    • 2003
  • 본 논문에서는 영한 자동번역 시스템에 한국어 스타일 생성 패턴을 적용함으로써 영한 번역 품질을 향상하고자 하는 것이 목표이다. 이러한 목표는 기존의 원문에 대한 번역문의 정보 전달 정확성을 측정하는 1차원적인 번역률 평가 방법에서 벗어나 번역문의 정보 정확성뿐만 아니라 자연스러움도 평가할 수 있는 2차원적인 번역률 평가방법으로써 정확성과 스타일을 동시에 평가하는 방법을 제안한다. 2차원적인 번역률 평가 방법에 따라 스타일 생성 패턴이 적용되기 전과 적용된 후의 평가 결과는 100문자의 샘플문을 대상으로 하였을 때, 스타일 생성 패턴에 의해서만 0.5%의 번역률이 향상되는 것을 관찰하였다. 본 논문에서의 스타일 생성 패턴은 단순히 언어간 스타일 차이만 적용한 것이며 향후에는 신문, 일기예보, 기술 매뉴얼과 같은 특정 그룹을 위한 스타일 생성 패턴을 적용할 계획이다.

  • PDF

An English-to-Korean Hybrid Mobile Translator for Mobile Devices (단말기 내장형 영한 하이브리드 모바일 번역기)

  • Yuh, Sang-Hwa;Baek, Yeong-Tae;Chae, Heung-Seog
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.25-28
    • /
    • 2011
  • 본 논문에서는 스마트폰과 같은 모바일 단말기 자체에서 동작하는 경량화된 영한 하이브리드 모바일 번역 엔진을 설계 및 구현하였다. 번역 엔진은 자연스러운 번역과 높은 번역 품질을 위해 번역 메모리(Translation Memory)와 규칙기반의 번역 엔진으로 이중화를 하였다. PC에 비해 하드웨어 제약이 심한 스마트폰 자체에서 구동이 원활하도록 주메모리의 사용을 줄이고 분석 시간 단축을 위하여 핵심 번역 엔진을 포함한 번역 지식 DB가 외장메모리에서 구동되도록 하였다. 실험결과 번역 품질은 BLEU와 NIST 평가치를 기준으로 서버 기반의 구글번역기 대비 70.0%로 사용자의 의미전달이 가능한 실용적인 수준으로 평가되었다.

  • PDF

A Linguistic Evaluation of English-to-Korean Translation - Centered on Machine Translation - (영한 번역의 언어학적 평가 모델 연구 - 기계번역을 중심으로 -)

  • 김덕봉;조병은;김명철;권용현
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.4
    • /
    • pp.11-27
    • /
    • 2001
  • Machine translation (MT) quality assessment is an outstanding problem. In the present situation in which the quality of machine-translated products are far from the user\\`s satisfaction objective evaluation of MT system is a prerequisite to building mutual trust between the users and the vendors stimulating constructive competition among the developers and finally leading to improve the quality of MT systems. Especially there emerges a need for an intensive study on how to evaluate the quality of MT systems from both linguistic and data processing aspects and to secure a steady improvement of the translation quality. With due regard to such points we in this paper present a linguistic evaluation of English-to-Korean machine translation based on a test suite composed of 3.373 sentences that were classified into their linguistic phenomena and complexity levels and report the experimental results made from several commercial MT systems.

  • PDF

Development of Korean-to-English and English-to-Korean Mobile Translator for Smartphone (스마트폰용 영한, 한영 모바일 번역기 개발)

  • Yuh, Sang-Hwa;Chae, Heung-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.229-236
    • /
    • 2011
  • In this paper we present light weighted English-to-Korean and Korean-to-English mobile translators on smart phones. For natural translation and higher translation quality, translation engines are hybridized with Translation Memory (TM) and Rule-based translation engine. In order to maximize the usability of the system, we combined an Optical Character Recognition (OCR) engine and Text-to-Speech (TTS) engine as a Front-End and Back-end of the mobile translators. With the BLEU and NIST evaluation metrics, the experimental results show our E-K and K-E mobile translation equality reach 72.4% and 77.7% of Google translators, respectively. This shows the quality of our mobile translators almost reaches the that of server-based machine translation to show its commercial usefulness.

A Study on English-Korean Messenger MT System based on Structured Translation Memory (구조화된 번역 메모리 기반 영한 메신저 자동 번역 시스템에 관한 연구)

  • Choi, Sung-Kwon;Kim, Young-Gil
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.361-364
    • /
    • 2011
  • 본 논문의 목표는 크게 두 가지이다. 하나는 2010년에 개발한 메신저 자동번역 시스템을 소개하는 것이고, 다른 하나는 메신저 대화체 문장을 더욱 고품질로 번역하기 위한 구조화된 번역 메모리(Structured Translation Memory)를 소개하는 것이다. 구조화된 번역 메모리는 기존의 문자열 기반의 번역 메모리와 자동 번역 시스템의 경계를 허무는 개념으로 구조를 표현하는 계층적 번역 메모리들로 구성된다. 구조화된 번역 메모리는 문자열 번역 메모리, 원형 어휘로 구성된 번역 메모리, 고유명사가 청킹된 번역 메모리, 날짜/숫자가 청킹된 번역 메모리, 기본명사구가 청킹된 번역 메모리, 문장 패턴 번역 메모리로 단계적으로 구성된다. 구조화된 번역 메모리를 적용하기 전의 2010년의 영한 메신저 자동 번역 시스템의 번역률이 81.67%였던 반면에, 구조화된 번역 메모리를 적용하려는 2011년의 영한 메신저 자동 번역 시스템의 시물레이션 번역률은 85.25%인 것으로 평가되었다. 따라서 구조화된 번역 메모리를 적용하였을 때는 기존의 번역률보다 3.58% 향상할 것으로 예측된다.

Automatic English-Korean Address Translation System for Extremely Unpredictable Error Generating Language Environments (극한 언어 환경에 대응 가능한 영한 자동 주소번역 시스템)

  • Jin, Jingzhi;Hwang, Myeongjin;Lee, Seungphil
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.239-242
    • /
    • 2016
  • 데이터베이스 기반 자동 주소번역은 입력 오류에 취약하며 범용 기계번역을 이용한 주소번역은 입력 및 번역 주소에 대한 품질 평가가 어렵다. 본 논문에서는 예측할 수 없는 입력 오류에도 대응할 수 있는 자동 주소번역 시스템을 제안한다. 제안 시스템은 n-gram 기반 검색, 미검색/오검색 분류, 번역, 신뢰도 자동평가로 구성된다. 신뢰할 수 있는 입력으로 자동 분류한 영문 국내주소를 국문으로 번역한 결과 95%이상의 정확도를 보였다.

  • PDF

Automatic English-Korean Address Translation System for Extremely Unpredictable Error Generating Language Environments (극한 언어 환경에 대응 가능한 영한 자동 주소번역 시스템)

  • Jin, Jingzhi;Hwang, Myeongjin;Lee, Seungphil
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.239-242
    • /
    • 2016
  • 데이터베이스 기반 자동 주소번역은 입력 오류에 취약하며 범용 기계번역을 이용한 주소번역은 입력 및 번역 주소에 대한 품질 평가가 어렵다. 본 논문에서는 예측할 수 없는 입력 오류에도 대응할 수 있는 자동 주소번역 시스템을 제안한다. 제안 시스템은 n-gram 기반 검색, 미검색/오검색 분류, 번역, 신뢰도 자동평가로 구성된다. 신뢰할 수 있는 입력으로 자동 분류한 영문 국내주소를 국문으로 번역한 결과 95%이상의 정확도를 보였다.

  • PDF

High-Quality Multimodal Dataset Construction Methodology for ChatGPT-Based Korean Vision-Language Pre-training (ChatGPT 기반 한국어 Vision-Language Pre-training을 위한 고품질 멀티모달 데이터셋 구축 방법론)

  • Jin Seong;Seung-heon Han;Jong-hun Shin;Soo-jong Lim;Oh-woog Kwon
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.603-608
    • /
    • 2023
  • 본 연구는 한국어 Vision-Language Pre-training 모델 학습을 위한 대규모 시각-언어 멀티모달 데이터셋 구축에 대한 필요성을 연구한다. 현재, 한국어 시각-언어 멀티모달 데이터셋은 부족하며, 양질의 데이터 획득이 어려운 상황이다. 따라서, 본 연구에서는 기계 번역을 활용하여 외국어(영문) 시각-언어 데이터를 한국어로 번역하고 이를 기반으로 생성형 AI를 활용한 데이터셋 구축 방법론을 제안한다. 우리는 다양한 캡션 생성 방법 중, ChatGPT를 활용하여 자연스럽고 고품질의 한국어 캡션을 자동으로 생성하기 위한 새로운 방법을 제안한다. 이를 통해 기존의 기계 번역 방법보다 더 나은 캡션 품질을 보장할 수 있으며, 여러가지 번역 결과를 앙상블하여 멀티모달 데이터셋을 효과적으로 구축하는데 활용한다. 뿐만 아니라, 본 연구에서는 의미론적 유사도 기반 평가 방식인 캡션 투영 일치도(Caption Projection Consistency) 소개하고, 다양한 번역 시스템 간의 영-한 캡션 투영 성능을 비교하며 이를 평가하는 기준을 제시한다. 최종적으로, 본 연구는 ChatGPT를 이용한 한국어 멀티모달 이미지-텍스트 멀티모달 데이터셋 구축을 위한 새로운 방법론을 제시하며, 대표적인 기계 번역기들보다 우수한 영한 캡션 투영 성능을 증명한다. 이를 통해, 우리의 연구는 부족한 High-Quality 한국어 데이터 셋을 자동으로 대량 구축할 수 있는 방향을 보여주며, 이 방법을 통해 딥러닝 기반 한국어 Vision-Language Pre-training 모델의 성능 향상에 기여할 것으로 기대한다.

  • PDF

Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation (영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소)

  • Kim Yu-Seop;Chang Jeong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.749-758
    • /
    • 2004
  • In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.