• 제목/요약/키워드: 영한 번역 품질 평가

검색결과 9건 처리시간 0.026초

한국어 스타일 생성 패턴에 의한 영한 번역 품질 개선 (Enhancement of English-to-Korean Translation Quality by Korean Style Generation Patterns)

  • 최승권;홍문표;박상규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2003년도 제15회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.235-240
    • /
    • 2003
  • 본 논문에서는 영한 자동번역 시스템에 한국어 스타일 생성 패턴을 적용함으로써 영한 번역 품질을 향상하고자 하는 것이 목표이다. 이러한 목표는 기존의 원문에 대한 번역문의 정보 전달 정확성을 측정하는 1차원적인 번역률 평가 방법에서 벗어나 번역문의 정보 정확성뿐만 아니라 자연스러움도 평가할 수 있는 2차원적인 번역률 평가방법으로써 정확성과 스타일을 동시에 평가하는 방법을 제안한다. 2차원적인 번역률 평가 방법에 따라 스타일 생성 패턴이 적용되기 전과 적용된 후의 평가 결과는 100문자의 샘플문을 대상으로 하였을 때, 스타일 생성 패턴에 의해서만 0.5%의 번역률이 향상되는 것을 관찰하였다. 본 논문에서의 스타일 생성 패턴은 단순히 언어간 스타일 차이만 적용한 것이며 향후에는 신문, 일기예보, 기술 매뉴얼과 같은 특정 그룹을 위한 스타일 생성 패턴을 적용할 계획이다.

  • PDF

단말기 내장형 영한 하이브리드 모바일 번역기 (An English-to-Korean Hybrid Mobile Translator for Mobile Devices)

  • 여상화;백영태;채흥석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.25-28
    • /
    • 2011
  • 본 논문에서는 스마트폰과 같은 모바일 단말기 자체에서 동작하는 경량화된 영한 하이브리드 모바일 번역 엔진을 설계 및 구현하였다. 번역 엔진은 자연스러운 번역과 높은 번역 품질을 위해 번역 메모리(Translation Memory)와 규칙기반의 번역 엔진으로 이중화를 하였다. PC에 비해 하드웨어 제약이 심한 스마트폰 자체에서 구동이 원활하도록 주메모리의 사용을 줄이고 분석 시간 단축을 위하여 핵심 번역 엔진을 포함한 번역 지식 DB가 외장메모리에서 구동되도록 하였다. 실험결과 번역 품질은 BLEU와 NIST 평가치를 기준으로 서버 기반의 구글번역기 대비 70.0%로 사용자의 의미전달이 가능한 실용적인 수준으로 평가되었다.

  • PDF

영한 번역의 언어학적 평가 모델 연구 - 기계번역을 중심으로 - (A Linguistic Evaluation of English-to-Korean Translation - Centered on Machine Translation -)

  • 김덕봉;조병은;김명철;권용현
    • 인지과학
    • /
    • 제12권4호
    • /
    • pp.11-27
    • /
    • 2001
  • 기계번역 품질 평가는 중대한 문제이다. 기계번역의 품질이 사용자 요구와 거리가 상당히 있는 현재의 상황에서 기계번역 시스템의 객관적 평가는 기계번역 소프트웨어 사용자와 판매자 간의 신뢰를 구축하고 개발자들 간에 생산적인 경쟁관계를 조성하게 하여 결과적으로 기계번역 품질의 고급화를 지속적으로 유도하는 역할을 할 것이다. 이를 위해서는 특히 언어학적 측면과 자료처리 측면에서 개선이 계속되고 있는지를 확인할 수 있도록 기계번역 시스템의 품질을 평가할 수 있는 연구가 있어야 한다. 본 논문에서는 이런 정들을 고려해 넣은 영한 기계번역의 언어학적 평가 방법을 제시하고 이를 몇 개의 상용 기계번역 시스템을 대상으로 실험하여 실험결과를 보고한다. 이 방법은 기본적으로 언어현상과 학습수준으로 분류된 3.373 영어 문장으로 구성된 평가자료에 기반하고 있다.

  • PDF

스마트폰용 영한, 한영 모바일 번역기 개발 (Development of Korean-to-English and English-to-Korean Mobile Translator for Smartphone)

  • 여상화;채흥석
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권3호
    • /
    • pp.229-236
    • /
    • 2011
  • 본 논문에서는 스마트폰용 경량화된 영한, 한영 모바일 번역기를 설계 및 구현한다. 번역 엔진은 자연스러운 번역과 높은 번역 품질을 위해 번역 메모리와 규칙기반의 번역 엔진으로 이중화를 한다. 개발된 번역 엔진의 사용자의 사용성 (Usability)을 극대화하기 위해 스마트폰에 내장된 카메라를 통한 문자인식(OCR; Optical Character Recognition) 엔진과 음성 합성 엔진(TTS; Text-to-Speech)을 각각 Front-End와 Back-end에 접목하였다. 실험결과 번역 품질은 BLEU와 NIST 평가치를 기준으로 구글번역기 대비 영한 번역은 72.4%, 한영 번역은 77.7%로 평가되었다. 이러한 평가결과는 본 논문에서 개발한 모바일 자동번역기가 서버 기반의 번역기의 성능에 근접하며 상업적으로 유용함을 보여준다.

구조화된 번역 메모리 기반 영한 메신저 자동 번역 시스템에 관한 연구 (A Study on English-Korean Messenger MT System based on Structured Translation Memory)

  • 최승권;김영길
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.361-364
    • /
    • 2011
  • 본 논문의 목표는 크게 두 가지이다. 하나는 2010년에 개발한 메신저 자동번역 시스템을 소개하는 것이고, 다른 하나는 메신저 대화체 문장을 더욱 고품질로 번역하기 위한 구조화된 번역 메모리(Structured Translation Memory)를 소개하는 것이다. 구조화된 번역 메모리는 기존의 문자열 기반의 번역 메모리와 자동 번역 시스템의 경계를 허무는 개념으로 구조를 표현하는 계층적 번역 메모리들로 구성된다. 구조화된 번역 메모리는 문자열 번역 메모리, 원형 어휘로 구성된 번역 메모리, 고유명사가 청킹된 번역 메모리, 날짜/숫자가 청킹된 번역 메모리, 기본명사구가 청킹된 번역 메모리, 문장 패턴 번역 메모리로 단계적으로 구성된다. 구조화된 번역 메모리를 적용하기 전의 2010년의 영한 메신저 자동 번역 시스템의 번역률이 81.67%였던 반면에, 구조화된 번역 메모리를 적용하려는 2011년의 영한 메신저 자동 번역 시스템의 시물레이션 번역률은 85.25%인 것으로 평가되었다. 따라서 구조화된 번역 메모리를 적용하였을 때는 기존의 번역률보다 3.58% 향상할 것으로 예측된다.

극한 언어 환경에 대응 가능한 영한 자동 주소번역 시스템 (Automatic English-Korean Address Translation System for Extremely Unpredictable Error Generating Language Environments)

  • 김경식;황명진;이승필
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.239-242
    • /
    • 2016
  • 데이터베이스 기반 자동 주소번역은 입력 오류에 취약하며 범용 기계번역을 이용한 주소번역은 입력 및 번역 주소에 대한 품질 평가가 어렵다. 본 논문에서는 예측할 수 없는 입력 오류에도 대응할 수 있는 자동 주소번역 시스템을 제안한다. 제안 시스템은 n-gram 기반 검색, 미검색/오검색 분류, 번역, 신뢰도 자동평가로 구성된다. 신뢰할 수 있는 입력으로 자동 분류한 영문 국내주소를 국문으로 번역한 결과 95%이상의 정확도를 보였다.

  • PDF

극한 언어 환경에 대응 가능한 영한 자동 주소번역 시스템 (Automatic English-Korean Address Translation System for Extremely Unpredictable Error Generating Language Environments)

  • 김경식;황명진;이승필
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.239-242
    • /
    • 2016
  • 데이터베이스 기반 자동 주소번역은 입력 오류에 취약하며 범용 기계번역을 이용한 주소번역은 입력 및 번역 주소에 대한 품질 평가가 어렵다. 본 논문에서는 예측할 수 없는 입력 오류에도 대응할 수 있는 자동 주소번역 시스템을 제안한다. 제안 시스템은 n-gram 기반 검색, 미검색/오검색 분류, 번역, 신뢰도 자동평가로 구성된다. 신뢰할 수 있는 입력으로 자동 분류한 영문 국내주소를 국문으로 번역한 결과 95%이상의 정확도를 보였다.

  • PDF

ChatGPT 기반 한국어 Vision-Language Pre-training을 위한 고품질 멀티모달 데이터셋 구축 방법론 (High-Quality Multimodal Dataset Construction Methodology for ChatGPT-Based Korean Vision-Language Pre-training)

  • 성진;한승헌;신종훈;임수종;권오욱
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.603-608
    • /
    • 2023
  • 본 연구는 한국어 Vision-Language Pre-training 모델 학습을 위한 대규모 시각-언어 멀티모달 데이터셋 구축에 대한 필요성을 연구한다. 현재, 한국어 시각-언어 멀티모달 데이터셋은 부족하며, 양질의 데이터 획득이 어려운 상황이다. 따라서, 본 연구에서는 기계 번역을 활용하여 외국어(영문) 시각-언어 데이터를 한국어로 번역하고 이를 기반으로 생성형 AI를 활용한 데이터셋 구축 방법론을 제안한다. 우리는 다양한 캡션 생성 방법 중, ChatGPT를 활용하여 자연스럽고 고품질의 한국어 캡션을 자동으로 생성하기 위한 새로운 방법을 제안한다. 이를 통해 기존의 기계 번역 방법보다 더 나은 캡션 품질을 보장할 수 있으며, 여러가지 번역 결과를 앙상블하여 멀티모달 데이터셋을 효과적으로 구축하는데 활용한다. 뿐만 아니라, 본 연구에서는 의미론적 유사도 기반 평가 방식인 캡션 투영 일치도(Caption Projection Consistency) 소개하고, 다양한 번역 시스템 간의 영-한 캡션 투영 성능을 비교하며 이를 평가하는 기준을 제시한다. 최종적으로, 본 연구는 ChatGPT를 이용한 한국어 멀티모달 이미지-텍스트 멀티모달 데이터셋 구축을 위한 새로운 방법론을 제시하며, 대표적인 기계 번역기들보다 우수한 영한 캡션 투영 성능을 증명한다. 이를 통해, 우리의 연구는 부족한 High-Quality 한국어 데이터 셋을 자동으로 대량 구축할 수 있는 방향을 보여주며, 이 방법을 통해 딥러닝 기반 한국어 Vision-Language Pre-training 모델의 성능 향상에 기여할 것으로 기대한다.

  • PDF

영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소 (Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation)

  • 김유섭;장정호
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.749-758
    • /
    • 2004
  • 본 논문에서는 미가공 말뭉치 데이터를 활용하여 영한 기계번역 시스템의 대역어 선택 시 발생하는 중의성을 해소하는 방법을 제안한다. 이를 위하여 은닉 의미 분석(Latent Semantic Analysis : LSA)과 확률적 은닉 의미 분석(Probabilistic LSA : PLSA)을 적용한다. 이 두 기법은 텍스트 문단과 같은 문맥 정보가 주어졌을 때, 이 문맥이 내포하고 있는 복잡한 의미 구조를 표현할 수 있다 본 논문에서는 이들을 사용하여 언어적인 의미 지식(Semantic Knowledge)을 구축하였으며 이 지식은 결국 영한 기계번역에서의 대역어 선택 시 발생하는 중의성을 해소하기 위하여 단어간 의미 유사도를 추정하는데 사용된다. 또한 대역어 선택을 위해서는 미리 사전에 저장된 문법 관계를 활용하여야 한다. 본 논문에서는 이러한 대역어 선택 시 발생하는 데이터 희소성 문제를 해소하기 위하여 k-최근점 학습 알고리즘을 사용한다. 그리고 위의 두 모델을 활용하여 k-최근점 학습에서 필요한 예제 간 거리를 추정하였다. 실험에서는, 두 기법에서의 은닉 의미 공간을 구성하기 위하여 TREC 데이터(AP news)론 활용하였고, 대역어 선택의 정확도를 평가하기 위하여 Wall Street Journal 말뭉치를 사용하였다. 그리고 은닉 의미 분석을 통하여 대역어 선택의 정확성이 디폴트 의미 선택과 비교하여 약 10% 향상되었으며 PLSA가 LSA보다 근소하게 더 좋은 성능을 보였다. 또한 은닉 공간에서의 축소된 벡터의 차원수와 k-최근점 학습에서의 k값이 대역어 선택의 정확도에 미치는 영향을 대역어 선택 정확도와의 상관관계를 계산함으로써 검증하였다.젝트의 성격에 맞도록 필요한 조정만을 통하여 품질보증 프로세스를 확립할 수 있다. 개발 된 패키지의 효율적인 활용이 내조직의 소프트웨어 품질보증 구축에 투입되는 공수 및 어려움을 줄일 것으로 기대된다.도가 증가할 때 구기자 열수 추출 농축액은 $1.6182{\sim}2.0543$, 혼합구기자 열수 추출 농축액은 $1.7057{\sim}2.1462{\times}10^7\;J/kg{\cdot}mol$로 증가하였다. 이와 같이 구기자 열수 추출 농축액과 혼합구기자 열수 추출 농축액의 리올리지적 특성에 큰 차이를 나타내지는 않았다. security simultaneously.% 첨가시 pH 5.0, 7.0 및 8.0에서 각각 대조구의 57, 413 및 315% 증진되었다. 거품의 열안정성은 15분 whipping시, pH 4.0(대조구, 30.2%) 및 5.0(대조구, 23.7%)에서 각각 $0{\sim}38.0$$0{\sim}57.0%$이었고 pH 7.0(대조구, 39.6%) 및 8.0(대조구, 43.6%)에서 각각 $0{\sim}59.4$$36.6{\sim}58.4%$이었으며 sodium alginate 첨가시가 가장 양호하였다. 전체적으로 보아 거품안정성이 높은 것은 열안정성도 높은 경향이며, 표면장력이 낮으면 거품형성능이 높아지고, 비점도가 높으면 거품안정성 및 열안정성이 높아지는 경향이 있었다.protocol.eractions between application agents that are developed using different