워터쉐드 알고리즘에 의해 과분할 된 영상은 이후 영상의 이해 및 분석 작업의 편의성을 위하여 영역 병합 작업이 필요하다. 본 논문에서는 유사한 색상을 갖는 영역의 경계선을 보다 잘 유지할 수 있도록 통합 비유사도를 정의하고, 이를 이용한 영역 병합 방법을 제안한다. 통합 비유사도는 영역의 색상 정보, 인접한 두 영역 사이의 평균 그래디언트 값 정보, 두 영역 사이의 인접한 픽셀 수 정보를 이용하여 정의된다. 영역 병합과정에서는 영역 면적의 크기와 영역간 통합 비유사도를 고려한 3 단계 영역 병합 방법을 수행한다. 자연 영상에 대한 실험 결과 제안한 방법이 기존의 방법보다 경계선 정보를 보다 잘 유지하고 사람이 느끼기에 보다 정확한 영역 병합 결과를 나타냄을 확인하였다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.40
no.1
/
pp.63-71
/
2003
This paper describes a color image segmentation algorithm based on region merging using hue difference as a restrictive condition. The proposed algorithm using mathematical morphology and a modified watershed algorithm does over-segmentation in the RGB space to preserve contour information of regions. Then, the segmentation result of color image is acquired by repeated region merging using hue differences as a restrictive condition. This stems from human visual system based on hue, saturation, and intensity. Hue difference between two regions is used as a restrictive condition for region merging because it becomes more important factor than color difference if intensity is not low. Simulation results show that the proposed color image segmentation algorithm provides efficient segmentation results with the predefined number of regions for various color images.
PACS의 보급으로 인하여 CT, MRI 등의 의료영상이 진료에 광범위하게 사용되고 있고, 또 의사가 좀 더 정량적이거나 사실적인 visualization을 위해서 분할은 필수적으로 수행되어져야 할 과정이라고 할 수 있다. 의료 영상에서 watershed 알고리듬을 이용하여 분할을 하는데 있어 가장 큰 문제가 되는 점은 과분할현상(Oversegmentation)이기 때문에 그 분할된 영역을 의미 있는 영역별로 합치는 영역 병합(merge) 과정을 필요로 하게 된다. 의료영상에서 모호한 경계는 매우 빈번하게 나타나기 때문에 기존의 병합 방법을 적용하는데 어려움이 있다. 본 논문에서는 이런 모호한 경계를 갖는 영상에서도 알맞는 병합을 가질 수 있는 적응적 영역 병합 방법을 제안한다. 제안된 분할 방법을 DICOM 영상의 폐 영상과 다리 뼈 영상에서 실험하였다. 그 결과 뼈와 폐영역을 성공적으로 병합하면서 인접한 장기들과는 구분 지을 수 있었다.
Mean shift procedure is applied for the data points in the joint spatial-range domain and achieves a high quality. However, a color image is segmented differently according to the inputted spatial parameter or range parameter and the demerit is that the image is broken into many small regions in case of the small parameter. In this paper, to improve this demerit, we propose the method that groups similar regions using region merging method for over-segmented images. The proposed method converts a over-segmented image in RGB color space into in HSI color space and merges similar regions by hue information. Here, to preserve edge information, the region merge constraints are used to decide whether regions are merged or not. After then, we merge the regions in RGB color space for non-processed regions in HSI color space. Experimental results show the superiority in region's segmentation results.
Proceedings of the Korea Multimedia Society Conference
/
2003.05b
/
pp.472-475
/
2003
본 논문에서는 칼라맵 인덱스와 Hue 정보를 이용하여 반복적 병합을 통해 분할하는 칼라 영상 분할 방법을 제안하였다. 먼저 영상을 벡터 양자화 한 후 양자화 칼라맵 인덱스를 이용해 초기 영역을 설정한다. 초기 영역으로 선택된 영역들은 Hue 정보를 이용하여 영역을 병합하였고 그 후 미소영역을 병합하였다. 이때 반복처리로 인해 수행시간이 많이 소요되는 것을 개선하기 위해 Hue 정보를 이용한 영역 병합 처리에서 두 개의 테이블을 이용하여 속도를 개선하였다. 후처리에서는 과분할된 영역을 제거하기 위해 RGB 칼라 성분의 유클리디언 거리를 이용하여 주변유사 영역에 병합하였다. 제안 방법은 다수의 칼라 영상에 적용하여 좋은 분할 결과와 빠른 처리속도를 보여주었다.
In this paper, we propose an image segmentation method preserving object's boundaries by using the number of quantized colors and merging regions using adaptive threshold values. First of all, the proposed method quantizes an original image by a vector quantization and the number of quantized colors is determined differently using PSNR each image. We obtain initial regions from the quantized image, merge initial regions in CIE Lab color space and RGB color space step by step and segment the image into semantic regions. In each merging step, we use color distance between adjacent regions as similarity-measure. Threshold values for region-merging are determined adaptively according to the global mean of the color difference between the original image and its split-regions and the mean of those variations. Also, if the segmented image of RGB color space doesn't split into semantic objects, we merge the image again in the CIE Lab color space as post-processing. Whether the post-processing is done is determined by using the color distance between initial regions of the image and the segmented image of RGB color space. Experiment results show that the proposed method splits an original image into main objects and boundaries of the segmented image are preserved. Also, the proposed method provides better results for objective measure than the conventional method.
In this paper, we propose color image segmentation by region merging method preserving the boundary of an object. The proposed method selects initial region by using quantized image's index map after vector quantizing an original image. After then, we merge regions by applying boundary restricted factor in order to consider the boundary of an object in HSI color space. Also we merge the regions in RGB color space for non-processed regions in HSI color space. And we reduce processing time by decreasing iterative process in region merging algorithm. Experimental results have demonstrated the superiority in region's segmentation results and processing time for various images.
Proceedings of the Korean Society of Computer Information Conference
/
2010.07a
/
pp.145-148
/
2010
본 논문에서 우리는 도로 영역과 하늘 영역, 그리고 도로와 하늘이 아닌 나머지 영역으로 분할하기 위해 동적인(dynamic) 패턴을 이용한 적응적인(adaptive) 병합 방법을 제안한다. 원본영상에서 Mean Shift 알고리즘과 라벨링(Labeling)을 수행하고 영역을 과분할 한다. 컬러에 의해서 도로와 하늘영역이 검출되지 못하는 영역을 위해서 도로 영역과 하늘 영역에서 동적인 패턴 추출한 후 매칭을 통해 유사 영역을 병합한다. 이것은 도로와 하늘의 정보를 현재 환경에서 적응적으로 추출하는 방법이다. 실험에서 정적인(static) 패턴을 사용해서 병합하는 방법과 동적인 패턴을 사용해서 병합하는 방법을 비교하였다. 그 결과, 동적인 패턴을 사용하였을 때 8.12%의 향상된 성능을 보였다.
Proceedings of the Korea Contents Association Conference
/
2006.05a
/
pp.401-404
/
2006
Mean shift procedure is applied for the data points in the joint spatial-range domain and achieves a high quality. However, a color image is segmented differently according to the inputted spatial parameter or range parameter and the demerit is that the image is broken into many small regions in case of the small parameter. In this paper, to improve this demerit, we propose the method that groups similar regions using region merging method for over-segmented images. The proposed method converts a over-segmented image in RGB color space into in HSI color space and merges similar regions by hue information. Here, to preserve edge information, the proposed method use by merging constraints to decide whether regions is merged or not. After then, we merge the regions in RGB color space for non-processed regions in HSI color space. Experimental results show the superiority in region's segmentation results.
Proceedings of the Korea Multimedia Society Conference
/
2002.05c
/
pp.272-276
/
2002
본 논문은 영역을 병합할 때 두 영역의 색상 차를 영역 병합의 제한 조건으로 사용하는 칼라 영상 분할 기법을 제안하였다. 이는 먼저 영역의 경계선 정보를 잘 보존하기 위해서 RGB 공간상에서 수리형태학 필터와 변형된 워터쉐드 알고리즘을 이용하여 칼라 영상을 과분할 한다. 그리고 영역 간의 색상 차를 제한 조건으로 사용하는 영역 병합 과정을 반복 수행하여 칼라 영상의 분할 결과를 얻는다. 이는 인간 시각 시스템이 색상, 채도, 명도의 형태로 색을 구분하는 것을 기반으로 한다. 명도가 낮지 않는 경우에 색차 보다 색상 차가 중요한 요소로 작용하기 때문에 이를 영역 병합의 제한 조건으로 사용한다. 실험결과에서 제안된 칼라 영상 분할 기법은 다양한 칼라 영상에 대하여 적은 개수의 영역으로 동일한 색상을 가지는 영역의 경계선을 유지하는 효율적인 분할을 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.