• Title/Summary/Keyword: 영역확장 Clustering

Search Result 49, Processing Time 0.028 seconds

Classification and Retrieval of Object - Oriented Reuse Components with HACM (HACM을 사용한 객체지향 재사용 부품의 분류와 검색)

  • Bae, Je-Min;Kim, Sang-Geun;Lee, Kyung-Whan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1733-1748
    • /
    • 1997
  • In this paper, we propose the classification scheme and retrieval mechanism which can apply to many application domains in order to construct the software reuse library. Classification scheme which is the core of the accessibility in the reusability, is defined by the hierarchical structure using the agglomerative clusters. Agglomerative cluster means the group of the reuse component by the functional relationships. Functional relationships are measured by the HACM which is the representation method about software components to calculate the similarities among the classes in the particular domain. And clustering informations are added to the library structure which determines the functionality and accuracy of the retrieval system. And the system stores the classification results such as the index information with the weights, the similarity matrix, the hierarchical structure. Therefore users can retrieve the software component using the query which is the natural language. The thesis is studied to focus on the findability of software components in the reuse library. As a result, the part of the construction process of the reuse library was automated, and we can construct the object-oriented reuse library with the extendibility and relationship about the reuse components. Also the our process is visualized through the browse hierarchy of the retrieval environment, and the retrieval system is integrated to the reuse system CARS 2.1.

  • PDF

A Study on Urban Flower Landscape Type Classification - Focused on Literature and Expert FGI - (도시 화훼경관 유형화에 관한 연구 - 문헌 및 전문가 FGI를 중심으로 -)

  • Yoon, Duck-Kyu;Kim, Gun-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.42-58
    • /
    • 2020
  • The purpose of this study is to classify types of urban flower landscape. As a result of the study, first, through literature and case review, it was found that the four elements of place element, form element, natural element, artificial element, should be included in the sentence and key expression for defining the concept of flower landscape. In contemplating these four elements, a newly reconstructed concept of flower landscape was presented. This is expected to be the basis for the flower landscape integration theory. Second, flower landscape was defined as a genre and a unit of urban landscape. In addition, in order to build a system of flower landscape as a specialized area, after considering the concept, characteristics, and functions of a large category of urban landscape, its hierarchical categories with flower landscape were newly arranged. Thus, the flower landscape as an urban landscape was suggested. Third, in order to provide rational selection materials to consumers through type classification, related theories were investigated by expanding not only to the flower field, but also to the urban planning and urban ecology fields. 41 elements for the type classification were extracted, and 4 core elements were derived through the clustering process. Based on the 4 elements as the classification criteria, through the opinion verification from the FGI with experts, 9 types of middle-classification and 30 types of small-classification were derived. As a follow-up research suggestion, if a valid type is additionally established through a monitoring in the type application process, and more specified application types are developed and organized by expanding second-level classification hierarchy to the third-level hierarchy, this will lead to great studies improving the system of the types.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.

A Study of User Interests and Tag Classification related to resources in a Social Tagging System (소셜 태깅에서 관심사로 바라본 태그 특징 연구 - 소셜 북마킹 사이트 'del.icio.us'의 태그를 중심으로 -)

  • Bae, Joo-Hee;Lee, Kyung-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.826-833
    • /
    • 2009
  • Currently, the rise of social tagging has changing taxonomy to folksonomy. Tag represents a new approach to organizing information. Nonhierarchical classification allows data to be freely gathered, allows easy access, and has the ability to move directly to other content topics. Tag is expected to play a key role in clustering various types of contents, it is expand to network in the common interests among users. First, this paper determine the relationships among user, tags and resources in social tagging system and examine the circumstances of what aspects to users when creating a tag related to features of websites. Therefore, this study uses tags from the social bookmarking service 'del.icio.us' to analyze the features of tag words when adding a new web page to a list. To do this, websites features classified into 7 items, it is known as tag classification related to resources. Experiments were conducted to test the proposed classify method in the area of music, photography and games. This paper attempts to investigate the perspective in which users apply a tag to a webpage and establish the capacity of expanding a social service that offers the opportunity to create a new business model.

  • PDF

Hotspot Analysis of Urban Crime Using Space-Time Scan Statistics (시공간검정통계량을 이용한 도시범죄의 핫스팟분석)

  • Jeong, Kyeong-Seok;Moon, Tae-Heon;Jeong, Jae-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.14-28
    • /
    • 2010
  • The aim of this study is to investigate crime hotspot areas using the spatio-temporal cluster analysis which is possible to search simultaneously time range as well as space range as an alternative method of existing hotspot analysis only identifying crime occurrence distribution patterns in urban area. As for research method, first, crime data were collected from criminal registers provided by official police authority in M city, Gyeongnam and crime occurrence patterns were drafted on a map by using Geographic Information Systems(GIS). Second, by utilizing Ripley K-function and Space-Time Scan Statistics analysis, the spatio-temporal distribution of crime was examined. The results showed that the risk of crime was significantly clustered at relatively few places and the spatio-temporal clustered areas of crime were different from those predicted by existing spatial hotspot analysis such as kernel density analysis and k-means clustering analysis. Finally, it is expected that the results of this study can be not only utilized as a valuable reference data for establishing urban planning and crime prevention through environmental design(CPTED), but also made available for the allocation of police resources and the improvement of public security services.

A Study of Key Pre-distribution Scheme in Hierarchical Sensor Networks (계층적 클러스터 센서 네트워크의 키 사전 분배 기법에 대한 연구)

  • Choi, Dong-Min;Shin, Jian;Chung, Il-Yong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.1
    • /
    • pp.43-56
    • /
    • 2012
  • Wireless sensor networks consist of numerous small-sized nodes equipped with limited computing power and storage as well as energy-limited disposable batteries. In this networks, nodes are deployed in a large given area and communicate with each other in short distances via wireless links. For energy efficient networks, dynamic clustering protocol is an effective technique to achieve prolonged network lifetime, scalability, and load balancing which are known as important requirements. this technique has a characteristic that sensing data which gathered by many nodes are aggregated by cluster head node. In the case of cluster head node is exposed by attacker, there is no guarantee of safe and stable network. Therefore, for secure communications in such a sensor network, it is important to be able to encrypt the messages transmitted by sensor nodes. Especially, cluster based sensor networks that are designed for energy efficient, strongly recommended suitable key management and authentication methods to guarantee optimal stability. To achieve secured network, we propose a key management scheme which is appropriate for hierarchical sensor networks. Proposed scheme is based on polynomial key pool pre-distribution scheme, and sustain a stable network through key authentication process.

A Study on Detection Technique of Anomaly Signal for Financial Loan Fraud Based on Social Network Analysis (소셜 네트워크 분석 기반의 금융회사 불법대출 이상징후 탐지기법에 관한 연구)

  • Wi, Choong-Ki;Kim, Hyoung-Joong;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.851-868
    • /
    • 2012
  • After the financial crisis in 2008, the financial market still seems to be unstable with expanding the insolvency of the financial companies' real estate project financing loan in the aftermath of the lasted real estate recession. Especially after the illegal actions of people's financial institutions disclosed, while increased the anxiety of economic subjects about financial markets and weighted in the confusion of financial markets, the potential risk for the overall national economy is increasing. Thus as economic recession prolongs, the people's financial institutions having a weak profit structure and financing ability commit illegal acts in a variety of ways in order to conceal insolvent assets. Especially it is hard to find the loans of shareholder and the same borrower sharing credit risk in advance because most of them usually use a third-party's name bank account. Therefore, in order to effectively detect the fraud under other's name, it is necessary to analyze by clustering the borrowers high-related to a particular borrower through an analysis of association between the whole borrowers. In this paper, we introduce Analysis Techniques for detecting financial loan frauds in advance through an analysis of association between the whole borrowers by extending SNA(social network analysis) which is being studied by focused on sociology recently to the forensic accounting field of the financial frauds. Also this technique introduced in this pager will be very useful to regulatory authorities or law enforcement agencies at the field inspection or investigation.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

Development of Beauty Experience Pattern Map Based on Consumer Emotions: Focusing on Cosmetics (소비자 감성 기반 뷰티 경험 패턴 맵 개발: 화장품을 중심으로)

  • Seo, Bong-Goon;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.179-196
    • /
    • 2019
  • Recently, the "Smart Consumer" has been emerging. He or she is increasingly inclined to search for and purchase products by taking into account personal judgment or expert reviews rather than by relying on information delivered through manufacturers' advertising. This is especially true when purchasing cosmetics. Because cosmetics act directly on the skin, consumers respond seriously to dangerous chemical elements they contain or to skin problems they may cause. Above all, cosmetics should fit well with the purchaser's skin type. In addition, changes in global cosmetics consumer trends make it necessary to study this field. The desire to find one's own individualized cosmetics is being revealed to consumers around the world and is known as "Finding the Holy Grail." Many consumers show a deep interest in customized cosmetics with the cultural boom known as "K-Beauty" (an aspect of "Han-Ryu"), the growth of personal grooming, and the emergence of "self-culture" that includes "self-beauty" and "self-interior." These trends have led to the explosive popularity of cosmetics made in Korea in the Chinese and Southeast Asian markets. In order to meet the customized cosmetics needs of consumers, cosmetics manufacturers and related companies are responding by concentrating on delivering premium services through the convergence of ICT(Information, Communication and Technology). Despite the evolution of companies' responses regarding market trends toward customized cosmetics, there is no "Intelligent Data Platform" that deals holistically with consumers' skin condition experience and thus attaches emotions to products and services. To find the Holy Grail of customized cosmetics, it is important to acquire and analyze consumer data on what they want in order to address their experiences and emotions. The emotions consumers are addressing when purchasing cosmetics varies by their age, sex, skin type, and specific skin issues and influences what price is considered reasonable. Therefore, it is necessary to classify emotions regarding cosmetics by individual consumer. Because of its importance, consumer emotion analysis has been used for both services and products. Given the trends identified above, we judge that consumer emotion analysis can be used in our study. Therefore, we collected and indexed data on consumers' emotions regarding their cosmetics experiences focusing on consumers' language. We crawled the cosmetics emotion data from SNS (blog and Twitter) according to sales ranking ($1^{st}$ to $99^{th}$), focusing on the ample/serum category. A total of 357 emotional adjectives were collected, and we combined and abstracted similar or duplicate emotional adjectives. We conducted a "Consumer Sentiment Journey" workshop to build a "Consumer Sentiment Dictionary," and this resulted in a total of 76 emotional adjectives regarding cosmetics consumer experience. Using these 76 emotional adjectives, we performed clustering with the Self-Organizing Map (SOM) method. As a result of the analysis, we derived eight final clusters of cosmetics consumer sentiments. Using the vector values of each node for each cluster, the characteristics of each cluster were derived based on the top ten most frequently appearing consumer sentiments. Different characteristics were found in consumer sentiments in each cluster. We also developed a cosmetics experience pattern map. The study results confirmed that recommendation and classification systems that consider consumer emotions and sentiments are needed because each consumer differs in what he or she pursues and prefers. Furthermore, this study reaffirms that the application of emotion and sentiment analysis can be extended to various fields other than cosmetics, and it implies that consumer insights can be derived using these methods. They can be used not only to build a specialized sentiment dictionary using scientific processes and "Design Thinking Methodology," but we also expect that these methods can help us to understand consumers' psychological reactions and cognitive behaviors. If this study is further developed, we believe that it will be able to provide solutions based on consumer experience, and therefore that it can be developed as an aspect of marketing intelligence.