• 제목/요약/키워드: 영역분류

검색결과 2,557건 처리시간 0.037초

Kapur 방법과 퍼지 추론 규칙을 이용한 자궁 경부진 핵 인식 (Nucleus Recognition of Uterine Cervical Pap-Smears using Kapur Method and Fuzzy Reasoning Rule)

  • 강경민;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.241-247
    • /
    • 2007
  • 자궁 경부 세포진 영상의 핵 추출을 위해서는 영상의 배경과 핵 그리고 세포질 영역의 구분이 중요하다. 또한 정상 세포핵과 암종 세포핵의 구분 및 인식을 위해서는 세포핵들의 형태학적 특징을 이용한 분류 기준을 세워야한다. 본 논문에서는 자궁 경부 세포진 영상에서 세포핵의 후보 영역과 핵을 추출하기 위해 현미경 400배율 확대 사진을 획득하는 과정에서 훼손된 컬러 영상을 복원하기 위한 방법으로 Lighting Compensation을 적용하여 영상을 보정한다. 그리고 배경 영역과 세포핵 영역을 구분하기 위해 영상의 R,G,B 영역의 히스토그램의 분포를 이용하여 배경을 제거한다. 배경이 제거된 영상을 그레이 영상으로 변환 한 후, 히스토그램 명암도의 값을 이용하여 세포핵 영역과 세포질을 분류하여 세포핵 영역을 추출한다. 그리고 Kapur 방법을 적용하여 세포핵 영역의 엔트로피 누적확률을 구한 후, 영상을 이진화 한다. Kapur 방법이 적용된 이진화 영상에서 세포핵 영역의 중심과 주위 화소를 비교하는 $3\times3$ 마스크를 적용하여 영상의 미세한 잡음을 제거 한 후, 8방향 윤곽선 추적 알고리즘을 적용하여 최종적으로 세포핵 영역을 추출한다. 추출된 세포핵의 영역을 분류 및 인식하는 과정으로 세포의 외각의 방향성 정보, 핵의 크기, 그리고 면적 비율의 특징을 이용하여 퍼지 소속 함수를 설계한 후, 소속 함수의 소속도를 구하고 퍼지 추론 규칙을 적용하여 자궁 경부 세포진 영상에서 정상 세포핵 및 암종 세포핵을 인식한다.

  • PDF

건물 그림자와 폐색 보정을 통한 고해상도 위성영상의 분류정확도 향상 (High resolution satellite image classification enhancement using restortation of buildin shadow and occlusion)

  • 김해진;한유경;최재완;김용일
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.13-17
    • /
    • 2009
  • 고해상도 위성영상의 분류 기술은 최근 가장 활발히 연구되고 있는 분야 중 하나로 텍스쳐(texture), NDVI, PCA 영상 등 다양한 전처리 정보들을 추출하고 이를 멀티스펙트럴 밴드와 조합하여 분류 정확도를 높이는 기술을 개발하는 연구들이 주를 이루고 있다. 고해상도 위성영상에서 건물의 그림자와 옆벽면의 폐색 지역은 개체 추출 및 분류를 방해하는 주된 요인이 되며, 다양한 형태와 분광특성을 갖는 개개의 건물은 자동 분류 과정을 통해 제대로 식별되지 않는다는 한계를 갖는다. 이에 본 연구에서는 KOMPSAT-2 단영상으로부터 효율적으로 건물 정보 및 토지피복을 분류하기 위하여, 추출된 건물 정보를 바탕으로 건물의 그림자와 폐색지역을 보정한 후 비건물 지역에 대한 분류를 수행하여 분류 정확도를 높이고자 하였다. 우선 삼각벡터구조 기반의 반자동 인터페이스를 이용하여 건물의 3차원 모델 및 그림자 영역을 추출하고 이로부터 추출된 그림자 영역을 효과적으로 보정하기 위해 반복 선형회귀 연산을 이용한 그림자 보정을 수행한 후 inpainting 기법을 건물 폐색영역 복원에 적용하여 영상의 품질을 향상시켰다. 이러한 과정을 통해 도심 지역의 영상 분석에 있어 가장 큰 오차를 일으키는 인공물의 그림자와 폐색에 의한 오차를 최소화한 후 분류에 적용하여 이를 보정 전 영상을 이용한 분류 결과와 비교하였다.

  • PDF

관심 객체 검출에 기반한 객체 및 비객체 영상 분류 기법 (Object/Non-object Image Classification Based on the Detection of Objects of Interest)

  • 김성영
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.25-33
    • /
    • 2006
  • 본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다. 영상 분류를 위해 객체의 특징에 기반을 두고 네 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심 영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다. 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 세 번째 기준은 중심 객체의 평균 경계강도이다. 세 번째 기준은 분류 기준들중에서 가장 우수한 분류 성능을 나타내지만 특징값을 추출하기 위해서는 중심 객체를 추출해야 되는 많은 연산을 내포하고 있다. 이에 이와 비슷한 특성을 나타내는 네 번째 기준으로 영상 중심 영역에서의 평균 경계강도를 선택하였다. 네 번째 분류 기준은 세 번째 분류 기준에 비해 분류 성능은 조금 낮지만 빠르게 특징값을 추출할 수 있어 많은 데이터를 빠른 시간 내에 처리해야 되는 대규모 영상 데이터 베이스에 적용가능하다. 영상을 분류하기 위해 신경회로망 및 SVM을 사용하여 이들 기준들을 통합하였으며 신경회로망 및 SVM의 분류 성능을 비교하였다.

  • PDF

영역별 분류체계에 기반한 EJB 컴포넌트 관리 시스템 (EJB component management systems based on the domain classification schema)

  • 염연희;서동수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (1)
    • /
    • pp.463-465
    • /
    • 2000
  • 컴포넌트 기반 개발 방법이 보급됨에 따라 개발자들은 사용 가능한 컴포넌트들로부터 필요한 컴포넌트를 선별하는데 많은 노력과 시간을 투자한다. 컴포넌트 집합을 보다 효율적으로 관리하기 위해서는 영역별로 분류하는 작업과 컴포넌트를 등록, 관리, 검색하는 작업이 필요하다. 본 논문에서는 영역별 분류를 기반으로 EJB 컴포넌트를 명세하며, 이를 등록, 검색, 관리할 수 있는 컴포넌트 관리 시스템을 구현하였다. 컴포넌트 명세는 현재 구현되어진 EJB 컴포넌트를 수용할 수 있도록 UML 기반의 명세방식으로 사용자가 필요로 하는 정보를 제공할 수 있도록 정의하였다.

  • PDF

웨이브렛 변환과 영역 분류를 이용한 영상 검색 (Image Retrieval using the wavelet transform and region classification)

  • 황도연;유강수;박영석;박정호;곽훈성
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.349-351
    • /
    • 2001
  • 본 논문에서는 원 영상의 영역 분류와 웨이브렛 변환을 이용하여 영상의 밝기 변화에 관계없이 영상 검색이 가능한 알고리즘을 제안하였다. 이러한 방식을 통해 영상 전체에 대해 검색이 수행되지 않고, 영역 분류 결과인 블록맵과 변환 대역에서의 분산값 등 매우 소량의 정보만을 저장하고 이를 기반으로 영상 검색이 수행되므로 매우 빠르고 효과적인 검색이 가능함을 실험을 통해 확인하였다.

  • PDF

바타차야 거리를 이용한 차선 검출 알고리즘 (Lane Detection Algorithm with Bhattacharrya Distance)

  • 한재호;이철희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.899-900
    • /
    • 2017
  • 본 논문에서는 도로주행 영상 내에서 차선을 검출하는 알고리즘을 제안한다. 제안하는 알고리즘은 차량 내부 카메라로 촬영된 영상에 대하여 바타차야 거리를 이용해 차선 후보 영역을 검출한다. 검출된 영역에 대해 도로와 차선의 레퍼런스 RGB 값과의 바타차야 거리를 이용해 분류한 뒤, 차선이 갖는 특징을 모델링하여, 분류된 영역에서 차선으로 추정되는 영역만을 남긴다. 차선 영역 세그먼트의 흰 차선과 노란 차선의 클래스와의 유사도를 계산하여 검출된 차선정보를 제공한다.

SOM 기법을 이용한 초음파 영상에서의 지방간 분류 (Fatty Liver Classification of Ultrasonography Images using SOM Method)

  • 박하실;한민수;김영훈;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제50차 하계학술대회논문집 22권2호
    • /
    • pp.419-422
    • /
    • 2014
  • 본 논문에서는 환자와 검사자에게 초음파 영상의 객관화된 정보를 정확하게 제공하기 위해 간과 신장의 초음파 영상에 SOM 기법을 적용하여 지방간 농도 수치를 분류하는 방법을 제시한다. 제안된 방법은 간, 신장 영역을 촬영한 초음파 영상에서 촬영정보나 눈금자 등과 같이 필요 없는 부분을 잡음으로 간주하여 제거한 Region Of Interest(ROI) 영상을 추출하고, 추출된 ROI 영상에서 명암대비를 강조하기 위해 Fuzzy Stretching 기법을 적용한다. Stretching된 영상에 Enhanced Average Binary와 Labeling 기법으로 적용하여 얻은 Contour 정보를 분석하여 잡음을 제거한 후, 지방간의 측정 영역을 추출한다. 추출된 간과 신장의 측정 영역에 SOM 기법을 적용하여 명암도 값을 분류한 후, 간과 신장의 실질 영역의 대표 명암도를 각각 추출하여 비교 분석한다. 제안된 방법을 초음파 영상에 적용한 결과, 효율적이고 객관적으로 간의 지방도를 분류할 수 있는 가능성을 확인하였다.

  • PDF

컬러 영상에서 평균 이동 클러스터링과 단계별 영역 병합을 이용한 자동 원료 분류 알고리즘 (Automatic Classification Algorithm for Raw Materials using Mean Shift Clustering and Stepwise Region Merging in Color)

  • 김상준;곽준영;고병철
    • 방송공학회논문지
    • /
    • 제21권3호
    • /
    • pp.425-435
    • /
    • 2016
  • 본 논문에서는 카메라로부터 입력된 영상으로부터 쌀, 커피, 녹차 등 다양한 원료를 양품과 불량품으로 자동 분류하기 위한 분류 모델을 제안한다. 현재 농산물 원료 분류를 위해서 주로 숙달된 노동력의 육안 선택에 의존하고 있지만 작업시간이 길어질수록 반복적인 작업에 의해 분류 능력이 현저히 떨어지는 문제점이 있다. 노동력에 부분적으로 의존하는 기존 제품의 문제점을 해결하기 위해, 본 논문에서는 평균-이동 클러스터링 알고리즘과 단계별 영역 병합 알고리즘을 결합하는 비전기반 자동 원료 분류 알고리즘을 제안한다. 우선 입력 원료 영상에서 평균-이동 클러스터링 알고리즘을 적용하여 영상을 N개의 클러스터 영역으로 분할한다. 다음단계에서 N개의 클러스터 영역 중에서 대표 영역을 선택하고 이웃 영역들의 영역의 색상과 위치 근접성을 기반으로 단계별 영역 병합 알고리즘을 적용하여 유사한 클러스터 영역을 병합한다. 병합된 원료 객체는 RG, GB, BR의 2D 색상 분표로 표현되고, 병합된 원료 객체에 대해 색상 분포 타원을 만든다. 이후 미리 실험적으로 설정된 임계값을 적용하여 원료를 양품과 불량품을 구분한다. 다양한 원료 영상에 대해 본 논문에서 제안하는 알고리즘을 적용한 결과 기존의 클러스터링 알고리즘이나 상업용 분류 방법에 비해 사용자의 인위적 조작이 덜 필요하고 분류성능이 우수한 결과를 나타냄을 알 수 있었다.

컴퓨터 기법을 이용한 초음파 영상에서의 지방간 분류 (The Classification of Fatty Liver by Ultrasound Imaging using Computerizing Method)

  • 장현우;김광백;김창원
    • 한국정보통신학회논문지
    • /
    • 제17권9호
    • /
    • pp.2206-2212
    • /
    • 2013
  • 본 논문은 Fuzzy Contrast Enhancement 기법과 FCM을 이용하여 대비를 개선한 후, Fuzzy Contrast Enhancement를 간과 신장의 초음파 영상에 적용하여 지방간 농도 수치를 분류하는 방법을 제시한다. 간, 신장 영역을 촬영한 초음파 영상에서 촬영 정보나 눈금자 등과 같이 필요 없는 부분을 잡음으로 간주하여, 제거한 ROI 영상을 추출하고, Fuzzy Contrast Enhancement 알고리즘을 이용하여 명암 대비를 강조한다. Fuzzy Contrast Enhancement 기법이 적용된 간, 신장 영역 영상에서 평균 이진화를 적용한 후, 평균 이진화를 적용한 영상에 Blob 알고리즘을 적용하여 간, 신장 실질 영역의 ROI 영상을 추출한다. 추출한 간 영역과 신장영역의 ROI 영상을 FCM을 이용하여, 10개의 명암도 Level로 각 각 분류한 후, 분류된 간, 신장 실질 영역의 명암도 Level 중 많이 분포된 명암도 Level을 기준으로 간, 신장 실질 영역의 대표 명암도를 추출한다. 제안된 방법을 간, 신장 영역을 촬영한 초음파 영상에 적용하여 간의 지방도를 분류한 결과, 영상의학과 전문의의 판독과 일치하여 향후 지방간의 진단에 효과적으로 적용할 수 있는 방법이 될 수 있을 것으로 사료된다.

FISH 세포영상에서의 군집세포 분할 기법 (Segmentation Method of Overlapped nuclei in FISH Image)

  • 정미라;고병철;남재열
    • 정보처리학회논문지B
    • /
    • 제16B권2호
    • /
    • pp.131-140
    • /
    • 2009
  • 본 논문에서는 입력된 FISH 세포영상을 군집세포영역과 독립세포영역으로 분류하고, 군집세포영역에 대해서는 하나의 세포를 분리하는 알고리즘을 제안한다. 먼저 입력된 영상에 대해서 가우시안혼합모델과 세포의 명암도 값에 대한 최대 우도 함수를 사용하여 세포영역과 배경영역을 분할해줄 임계값을 정의하게 된다. 이렇게 얻어진 전경세포영역에 대해서 보다 정확한 세포 분석을 위해서 군집세포와 독립세포를 분류하게 된다. 세포 영역의 분류과정을 위해서는 베이지안 네트워크와 확률밀도함수를 사용한다. 학습데이터로부터 밀집도(compactness), 평활도(smoothness), 후-모멘트(Hu-moment)에 대한 형태학적 특징값을 추출하여 확률밀도함수를 구성하고, 이를 기반으로 베이지안 네트워크를 사용하여 두 영역을 분류하게 된다. 군집세포로 분류된 영역에 대해서는 그 군집세포를 구성하고 있는 독립세포로 각각 분리한다. 먼저, 명암도 기울기 변환(intensity gradient transform) 영상과 워터쉐드 알고리즘을 이용하여 군집세포 영역을 작은 영역으로 분할하게 된다. 작게 분할된 영역을 하나의 세포영역으로 병합시키기 위해서, 군집세포에 존재하는 독립세포의 수만큼의 마커를 결정 침식 연산을 사용하여 추출하고, 추출된 마커를 중심으로 단계적 병합 알고리즘을 제안한다. 본 논문에서 제안한 방법은 166개의 FISH 세포를 사용하여 테스트한 결과 99.29%의 정확한 분리결과를 보여줬으며 기존의 다른 알고리즘보다도 뛰어난 성능과 빠른 실행시간을 보여주었다.