• Title/Summary/Keyword: 영역기반 영상 검색

Search Result 258, Processing Time 0.038 seconds

A Study on Content-based Image Retrieval Technique using Texture Information (영상의 텍스쳐 정보를 이용한 내용 기반 영상 검색에 관한 연구)

  • Park, Kyung-Shik;Park, Kang-Seo;Hong, Min-Suk;Chung, Tae-Yun;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.751-753
    • /
    • 1999
  • 본 논문에서는 영상의 텍스쳐 정보를 이용하여 일반 영상에 대한 내용기반 영상 검색을 수행할 수 있는 알고리듬을 제안한다. Gabor 웨이브렛 변환을 이용하여 Gabor 필터 뱅크 내의 각 필터에 의해 필터링된 대역의 평균과 표준편차를 영상의 특징 벡터(Gabor Texture Feature)로 추출하여 영상들간의 유사성을 계산하는데 사용한다. 논문의 목적이 영상에 가해진 외적 변형, 즉 잡음 첨가, 블러링, 샤프닝 등과 같은 변형에 강인하게 동작할 수 있는 텍스쳐 특징 기반 영상 검색 기법을 제안하는 것이므로, 기존의 Gabor 필터만을 사용하여 텍스쳐 특징을 추출하여 검색의 기준으로 삼을 경우에 발생할 수 있는 주파수 성분의 변화에 대한 민감성을 Daubechies의 웨이브렛 필터를 사용하여 낮은 해상도에서 영상을 해석함으로써, 외적 변형에 대하여도 강인하게 동작할 수 있는 알고리듬을 제시하였다. 기존의 텍스쳐를 이용한 검색이 주로 텍스쳐 영역(textured region)에 대한 해석만을 하였지만, 본 논문에서는 이를 일반 영상에 적용하였으며, 일반 영상에 대해서도 효율적인 검색을 수행할 수 있음을 보였다.

  • PDF

A study on Scene-Change Detection Using Histogram Characteristic and Region-based Edge Characteristic (히스토그램 특징과 영역기반의 에지 특징에 의한 장면 전환 검출에 관한 연구)

  • 이득재;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.110-113
    • /
    • 2002
  • 통신과 멀티미디어 기술의 발전으로 대용량의 멀티미디어 자료에 대한 효율적인 검색 방법이 대두되고 있다. 본 논문에서 다루고자 하는 동영상 장면전환 검출 연구는 멀티미디어 데이터베이스의 내용기반 비디오 정보검색 및 비디오 데이터 인덱싱 구현의 기반이 되는 첫번째 단계의 핵심적인 분야에 속한다. 비디오 데이터를 내용기반으로 처리 하기 위해서는 우선 비디오데이터를 연속성에 의한 유사 영역으로 분할하여야 한다. 동영상을 분할하기 위한 방법으로 비디오의 불연속점을 찾아내는 장면전환 검출이 널리 사용되어 이에 관한 연구가 활발하게 진행되고 있다. 본 논문에서는 기존의 방법인 히스토그램 방식과 에지검출 방식의 장단점을 비교하고 두 알고리즘의 장점을 혼합한 방식을 제안하였다. 영상을 1차로 히스토그램의 피크값과 계곡특징값을 이용하고 2차로 에지검출 방식으로 두 단계로 나누어 처리하여 속도향상과 정확도를 높이고자 하는 방법을 제안하였다. 그리고 실험을 통하여 기존의 방법들과의 비교 분석을 통하여 성능평가를 하고자 한다.

  • PDF

Image Classification Into Object/Non-object Classes for Content-based Image Retrieval (내용기반 영상검색을 위한 객체 및 비객체 영상의 분류 방법)

  • 박소정;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.187-190
    • /
    • 2004
  • 본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다 영상 분류를 위해 객체의 특징에 기반하여 세 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 마지막 기준은 객체의 핵심 영역 경계에서의 경계 강도이다. 영상을 분류하기 위해서 신경 회로망 학습을 통해서 세 가지 기준들을 통합하도록 한다. 900개의 영상들에 대해 실헝한 결과 84.2%의 분류 정확도를 얻었다.

  • PDF

Image Retrieval Using Entropy Features (엔트로피 특징을 이용한 영상검색)

  • 서상용;천영덕;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.655-658
    • /
    • 2000
  • 본 논문에서는 웨이브릿 영역에서 엔트로피 특징과 웨이브릿 모멘트의 융합에 의한 효율적인 영상기법을 제안한다. 엔트로피 특징은 밝기값의 국부적 변화도에 민감하고 벨리, 에지 등의 특징을 잘 검출한다. 이러한 특징을 밴드별 위치정보와 주파수정보를 모두 가지는 웨이브릿 모멘트와 융합하여 내용기반 영상검색에 효과적으로 적응하였다. 실험에 사용한 DB는 Corel Draw영상을 사용하였으며 실험 결과, 기존의 검색 방법들에 비해 매우 우수한 검색 성능을 보임을 확인하였다.

  • PDF

2-D Invariant Descriptors for Shape-Based Image Retrieval (모양에 기반한 영상 검색을 위한 2-D Invariant Descriptor)

  • 박종승;장덕호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.554-556
    • /
    • 1999
  • 모양 정보를 이용하는 내용기반 영상 검색 시스템에서 검색 정확도는 시스템에서 사용되는 모양 기술자에 매우 의존한다. 정확한 검색을 위해서 기술자는 이동, 회전, 스케일에 불변해야 한다. 본 논문에서는 모멘트 불변량과 푸리에 기술자를 복합적으로 사용하는 유사도 기법을 제시한다. 이 방법은 하나의 불변량 기술자를 사용하는 것보다 더 우수한 결과를 나타내었다. 푸리에 기술자와 네 개의 모멘트 불변량(Hu의 모멘트 불변량, Taubin의 모멘트 불변량, Flusser의 모멘트 불변량, Zernike 모멘트 불변량)을 구현하여 성능을 측정하였다. 영상분할된 이진 영상 데이터베이스로부터 각 기술자의 검색 정확도를 계산하였다. 실험 결과 경계선에 기초하는 푸리에 기술자와 영역에 기초하는 모멘트 불변량을 동시에 사용하는 방법이 영상 검색에 있어서 우수한 성능을 보였다.

  • PDF

Caption Detection and Recognition for Video Image Information Retrieval (비디오 영상 정보 검색을 위한 문자 추출 및 인식)

  • 구건서
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.7
    • /
    • pp.901-914
    • /
    • 2002
  • In this paper, We propose an efficient automatic caption detection and location method, caption recognition using FE-MCBP(Feature Extraction based Multichained BackPropagation) neural network for content based retrieval of video. Frames are selected at fixed time interval from video and key frames are selected by gray scale histogram method. for each key frames, segmentation is performed and caption lines are detected using line scan method. lastly each characters are separated. This research improves speed and efficiency by color segmentation using local maximum analysis method before line scanning. Caption detection is a first stage of multimedia database organization and detected captions are used as input of text recognition system. Recognized captions can be searched by content based retrieval method.

  • PDF

Content-based Image Retrieval Using Object Region With Main Color (주 색상에 의한 객체 영역을 이용한 내용기반 영상 검색)

  • Kim Dong Woo;Chang Un Dong;Kwak Nae Joung;Song Young Jun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.44-50
    • /
    • 2006
  • This study has proposed a method of content-based image retrieval using object region in order to overcome disadvantages of existing color histogram methods. The existing color histogram methods have a weak point of reducing accuracy, because these have both a quantization error and an absence of spatial information. In order to overcome this problem, we convert a color information to a HSV space, quantize hue factor being pure color information, and calculate histogram. And then we use hue for retrieval feature that is robust in brightness, movement, and rotation. To solve the problem of the absence of spatial information, we select object region in terms of color feature and region correlation. And we use both the edge and the DC in the selected region for retrieving. As a result of experiment with 1,000 natural color images, the proposed method shows better precision and recall than the existing methods.

  • PDF

Content Based Image Retrieval System using Histogram Intersection and Autocorrelogram (히스토그램 인터섹션과 오토코릴로그램을 이용한 내용기반 영상검색 시스템)

  • 송석진;김효성;이희봉;남기곤
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • In this paper, when users choose a query image, we implemented a content-based image retrieval system that users can simply choose and extract a object region of query wanted with not only a whole image but various objects in it. Histogram is obtained by improved HSV transformations from query image and then candidate images are retrieved rapidly by a 1st similarity measure with histogram intersection using representative colors of query image. And finally retrieved images are extracted since 2nd similarity measure with banded autocorrelogram is performed so that recall and precision are improved by combining two retrieval methods that can make up for respective weak points. Moreover images in the database are indexed automatically within feature library that makes possible to retrieve images rapidly.

  • PDF

Object-based Image Retrieval Using Dominant Color Pair and Color Correlogram (Dominant 컬러쌍 정보와 Color Correlogram을 이용한 객체기반 영상검색)

  • 박기태;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • This paper proposes an object-based image retrieval technique based on the dominant color pair information. Most of existing methods for content based retrieval extract the features from an image as a whole, instead of an object of interest. As a result, the retrieval performance tends to degrade due to the background colors. This paper proposes an object based retrieval scheme, in which an object of interest is used as a query and the similarity is measured on candidate regions of DB images where the object may exist. From the segmented image, the dominant color pair information between adjacent regions is used for selecting candidate regions. The similarity between the query image and DB image is measured by using the color correlogram technique. The dominant color pair information is robust against translation, rotation, and scaling. Experimental results show that the performance of the proposed method has been improved by reducing the errors caused by background colors.

Natural Image Segmentation and Labeling Technique by Color-Spatial Histogram and Statistics (칼라-공간 히스토그램의 통계 정보를 이용한 자연 영상의 영역 분할 및 레이블링 기법)

  • 신수연;김우생
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.154-159
    • /
    • 2002
  • 영역 분할과 영역 레이블링은 내용에 기반한 영상 검색이나 영상 이해를 위해 선행되어야 하는 중요한 작업중의 하나이다. 본 논문에서는 칼라-공간 히스토그램의 통계정보를 통해 자연 영상내의 영역을 효율적으로 분할하고 또한 이러한 데이터를 생성규칙으로 만들어 레이블링 하는 새로운 방법을 제안한다. 제안하는 방법은 자연영상처럼 많지 않은 영역으로 이루어진 경우 매우 효율적임을 보였다.

  • PDF