2 oko} 7|ulkgk A HAE 9% 2-D Invariant Descriptor

HF50

3145

¥HRHAZANATYE AAHEE

park@etri.re.kr

dhchang@etri.re.kr

2-D Invariant Descriptors for Shape-Based Image Retrieval

J. 8. Park

D. H. Chang

Visual Information Team, ETRI, 161 Kajong-Dong, Yusong-Gu, Taejon, 305-350, South Korea

2

o}

EF JUE ol 3he B/ 4 Y A29AM Y AYEE A2 A= 25 Zled
of ¢ A8 AW AAE HAA 71ede ol F, 2, 25U Sdsof Yok & =N 2

NE $HFS Fold slexdd HPHe s Aedte

€A AgeART o $42 AoE dehisln

FALE 7|0 & A o] WYL st} Ed 7|
Fejol 71gatet vle) EUE $(Huo) TE

8%, Taubing] RRIE §8F, Flusserd ZRIE A, Zernike RHE FAH)E FU A H5& &

Aatgdcth dA4EYEHE o)A G4 diojeivfel 22 1Y

Z 71X AN YU AdstAch Ay A A

Aol 712 Felo 7lexist el Z2ste 2UE FUFE FAI AEste ol A Al

delA S8 A5E 2ot
Keywords:
tion

1. Introduction

There have been numerous works on similarity measures for 2-D
objects. Among them, moment invariants ( Hu’s moment invari-
ants {1,2,3], Taubin’s moment invariants {4], Flusser's moment
invariants {5), and Zernike moments [2,3,6]) and Fourier descrip-
tors [3] are considered as the most representative features in 2-D
shape matching. All of the measures are invariant to translation,
scale change, and rotation in 2-D space.

In general, the invariant property does not hold in a digital
image due to the generic problem of the discrete function. We
overcome the numeric problem by employing a two-stage simi-
larity scheme. Note that moment invariant is the region-based
measure and Fourier descriptor is the boundary-based measure.
First, we compute moment invariants to extract relevant images.
Then, the retrieval is verified using Fourier descriptors, which
increase the retrieval effectness substantially.

In Section 2-3, we describe invariant properties of moment
invariants and Fourier descriptors. that are used in our method
as similarity measures for image retrieval. Then, in Section 4,
our similarity scheme which uses both moment invariants and
Fourier descriptors is described. Experimental results are pre-
sented in Section 5. We conclude this paper with discussion and
future works in Section 6.

2. Fourier descriptors

Fourier descriptors are 2-D invariant features available from
boundary points. Suppose that the boundary of a particular
shape has IV pixels numbered from 0 to N — 1 and the contour
is described as two parametric equations: z(k) = zx, y(k) =
yk, k=0,...,N~1.Byconsidering the equations in the com-
plex plane, the direct parametric representation z(¢) is possible:
z(t) = z(t) + jy(t) . The Fourier descriptors Z(k) of the curve
is the discrete Fourier transform coefficients of the complex val-
ued curve 2(t) : Z(t) = & Z:’;ol z(k)exp (=137t} . A simple
normalization of Z(t) makes the Fourier descriptors invariant to
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the starting point of sampling, rotation, scaling and translation.
Each coefficient of a Fourier descriptor has two components,
amplitude and phase. By using only the amplitude component,
we achieve rotation invariance as well as the invariance to the
starting point. By dividing all amplitudes by the amplitude
of the first non-zero frequency coefficient, we achieve the scale
invariance. Since only the DC coefficient is dependent on the po-
sition of shape, it is discarded to achieve the translation invari-
ance. We compute the m-dimensional feature vector Fr from m
Fourier descriptors Z(—m/2),...,2(-1),2(2),...,Z(m/2+1)
by dividing the magnitudes by |Z(1)|. In our system, we choose
m = 16(= 2*) so that the transformation can be conducted
efficiently using FFT.

3. Moment Invariants

Moment invariants are useful in 2-D object recognition. Mo-
ment invariants are functions of moments that are invariant un-
der certain transformations. Although, moments are defined on
a continuous image intensity function, a simple approximation
is possible for a discrete binary image using summation oper-
ation. Let f be a binary digital image matrix with dimension
M x N, and let § = {(z,y)|f(z,y) = 1} represent a 2-D shape.
The moment of order (p,q) of shape S is given by mp.(S) =
Z(:,y)es zPy? . The central moment of order (p, ¢} of shape S is
given by ppq(8) = 37, . o(x — )"(y — )7 where (£,3) is the
center of gravity: T = m10(S)/moo(S) , § = mo1(S)/moo(S) .
From the central moments, the normalized central moments, de-
noted by 7,4, are defined as 7, = %03; where vy = ?%1 +1 for p+
g=2,3,....

3.1 Hu’s moment invariants

From the second- and third-order normalized central moments, a
set of seven invariant moments, which is invariant to translation,
scale change and rotation, has been derived by Hu[7}:

My,

n20 + No2
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Mg2 = (0 —n02)® + 41,

Mys = (30 — 3m2)” + (3n21 — m03)”

Mpa = (130 +m2)® + (121 +n03)?

Mys = (130 — 3ma)(mso +m2) [(mso + m2)* — 3(nz1 + n03)?]
+(3n21 — 103)(m21 + mo3) [3(n30 + m2)? — (21 + 7m03)?]

Mys = (mo—n02) [(130 +m2)? = (mar +moa)?]
+4m1(n30 + m2)(n21 + nos)

Mygr = (3n21 — mos)(m30 +m2) [(nso + m2)? — 3(na1 + moa)?]

—(n30 — 3m12)(21 +03) [3(n30 +m2)® — (722 + n03)?]

Hu(7] has proved the invariance properties of the seven mo-
ments for the case of continuous functions. For each object, we
compute the feature vector My = (Mni,..., Mnu7) to obtain
the similarity measure.

3.2 Taubin’s moment invariants

Taubin and Cooper[4] defined affine moment invariants by in-
troducing the concept of covariant matrix. From the central
moments of order 2 of shape S, a 2 x 2 matrix is computed :

’ !
My = [ B2 Hn ] where phg = pipg/moo(S). From M, a
H11 Moz
lower triangular matrix L = i: lgz such that LM; LT =

I is found using cholesky decomposition and matrix inversion.
From the center of gravity (Z,3) and the matrix L, the new
moments 7, for p + ¢ > 2, are found using the equation :

! —
Mpq =

#(S) Z [l (z = B)P [laa(z — £) + L2y — )] .

(z,¥)€S

From the 3rd-4th order moments, two matrices are found :

/ 7 I
/ / ’ C27s0 C2731  C2722
M, = CifMzo M2r  CiTh2 M. = ’ ’ 7
12 = 7 y ’ » Maz = | 13 22 G173
1721 Thz Ci%les ' ' ;
C2f22 CiTha C2log
where ¢1 = 2= and ¢ = 3- The eight moment invariants

Mt = (Mr1,...,M7g) are two eigenvalues of the 2 x 2 sym-
metric matrix M2 M7, three eigenvalue of the 3 x 3 symmet-
ric matrix My, two eigenvalue of the 2 x 2 symmetric matrix
M2 My M, and the scalar (o + 704).

3.3 Flusser’s moment invariants

Flusser and Suk[5] derived affine moment invariants which are
invariant under general 2-D affine transformations.

Mp1 = MEO4(u20u02 - 13)

Mpz = p5e(udonds — Susopziprzpos + dusouds +
dp03 13, — 3udiufp)

Mpz = pgg ((u20(uz1pos — pdy)) —
#11{p30p03 — p2ap12) + po2(Hsop1z — #31))

Mps = pooH(uonds — 6udgmi prapos —
6430 Hoz 21 o3 + 9#%9#02#?2 + 12#20#?1#21 Ho3 +
6u204411 102 430403 — 1812011 poz a1 12 — 8y Hzotios —
6uzopudapsontz + aondapd, + 1262, poopsoprz —
6u11 13230821 + 1dand,)

Mps = gy (haokos — dusipz + 3pd,)

Mps = u5e(aopoapaz + 2pa1 pazpiz — paokds — poand; — uda)

3.4 Zernike moment invariants

The Zernike moment of order n with repetition m that vanishes
outside the unit circle is

(z.9)€S, r2+y2<1

where Rnn{p) and V,;, are defined in [6]. The magnitudes
of the Zernike moments, |Anm|, are invariant to rotation. To
achieve scale and translation invariant property, we translate
the data points so that the origin is moved to the centroid
and scale the points so that the maximum distance from
the origin is equal to 1. The normalization affects the first
two features, |Aoo| and |A11]. From second to fifth order
moments, we compute the vector Mz from the 10 features,
|Aze|, |A2z2|, | As1], | 433, | Ado|, | Aaz|, | Aaal, | As1], | Ass|, | Ass]-

n+1

Anm = Viim (0, 8)

4. Similarity Measure

All of the descriptors described above have invariant properties
to rotation, translation, and scale changes. The invariance prop-
erties of the features hold for the case of continuous functions.
In discrete case, the set of moment invariants is still invariant
under image translation although the moments are computed
discretely. But the invariants are expected not to be strictly
invariant under rotation and scale changes due to sampling,
digitizing, and quantizing of the continuous image for digital
computation[l]. Moment invariants are not sufficient for distin-
guishing all shapes, they can be very sensitive to noise, and their
values drastically change with occlusion.

Figure 1 shows the invariant properties. Each two plots
from the first row to the fifth row corresponds to the invariant
property plots of Fourier descriptors, Hu's moment invariants,
Taubin’s moment invariants, Flusser’s invariants, and Zernike
moment invariants. Source object is an arrow shape image of
size 337 x 145. The transform parameter is a normalized scalar
(from 0 to 1) for the translation factor, the rotation factor, and
the scaling factor. The translation factor ranges from -400 to
400 in pixel units with step size 8, the rotation factor ranges
from 0 to 360 in degree with step size 3.6, and the scaling factor
ranges from -2 to 2 with step size 0.04. All of the descriptors
maintained good invariant properties during the transformation
although Taubin’s moment invariants oscillated within a narrow
range.

Note that moment invariants are the region-based mea-
sure and Fourier descriptors are the boundary-based measure.
Mehtre et. al[8] showed that the measure using both Fourier de-
scriptors and moment invariants gives the best average retrieval
efficiency. They thought this could be because the human per-
ceptual mechanism uses both these aspects of shape in order
to compute similarity. We followed the idea in computing the
similarity of two objects.

Contrary to their method of similarity computation, we em-
ploy two-stage similarity scheme. First, we compute moment
invariants to extract relevant images. Then, verification using
Fourier descriptors is followed which increases the retrieval ef-
fectness substantially.

The similarity distance between two feature vectors is com-
puted as the Euclidean distance.

First we compute the distance using a feature vector of mo-
ment invariants among the four kinds of moment invariants. The
first n images of closest distance are selected as candidates for
output. Among the n images, we reorder the sequence using the
distance of Fourier descriptors and we select m < n images in
decreasing order of distance of Fourier descriptors.
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5. Experimental Results

We have evaluated the retrieval effectiveness of the invariant de-
scriptors described in the previous section. In our application,
Hu’s moment invariants plus Fourier descriptors and Zernike
moment invariants plus Fourier descriptors showed good perfor-
mance relative to other descriptors.

An example of evaluation is shown in Table 1. The database
contains 85 animal images. Among the images, there are 10
rabbit images. For a query rabbit image, the number of re-
trieved rabbit images out of the first five(ten) retrieved images
are shown in the table.

The method using both moment invariants and Fourier de-
scriptors showed better results rather than method using mo-
ment invariants only or method using Fourier descriptors only,

The computation time on an Indigo2 IMPACT with a MIPS
R10000 processor is shown in Table 2. The test image of size
337 with 718 boundary points and 17761 region points.

Unexpected results may appear when there is a 3-D perspec-
tive effect in the shape since the invariance holds only when the
deformation is a kind of 2-D affine transformation. Bad results
may also appear when the two boundaries are from the same
object but a boundary was too much smoothed by a region ex-
traction module.

6. Conclusion

In this paper we introduced invariant features that may be
used for shape-based image retrieval. We considered Fourier de-
scriptors, Hu’s moment invariants, Taubin’s moment invariants,
Flusser’s moment invariants, and Zernike moments. Among the
invariants, combination of Fourier descriptors and moment in-
variants (Hu’s moment invariants or Zernike moments) showed
effective image retrieval.

As future works of our research, we are developing an image
segmentation algorithm which extracts only objects of interest
regardless of the complexity of the environment where the ob-
ject is located in. Future research should also include the shape
matching of partially recovered objects or objects having occlu-
siomns.
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Figure 1: Invariant property of descriptors.
Left: rotation, Right: scaling

query\method | FD HM TM FM ZM FH FZ
query 1 5/8 4/7 4/7 2/3_ 5/9 5/8 5/9
query 2 5/8 5/8 4/5 2/5 5/9 5/8 5/9
query 3 5/8 2/6 1/1 1/3 4/8 5/8 "5/8
query 4 578 5/7 _4/6 1/3_5/9 5/8 5/9

Table 1: Comparison to other similarity schemes. (Top 5/Top 10)
FH=FD+HM, FZ=FD+ZM

method | FD HM TM FM ZM FH FZ
time 001 002 0.02 002 093 003 094

Table 2: Comparison of computation time. (unit=sec)



