• 제목/요약/키워드: 영상 특징점

검색결과 1,280건 처리시간 0.037초

딥러닝 기반 특징점 필터링을 이용한 원격 탐사 영상 정합 고속화 연구 (A study high speed remote sensing image registration using deep learning-based keypoints filtering)

  • 이우주;심동규;오승준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.97-99
    • /
    • 2021
  • 본 논문에서는 딥러닝 기반 특징점 필터링 방법을 이용한 원격 탐사 영상에 대한 영상 정합 (Image Registration) 고속화 방법을 제안한다. 기존의 특징 기반 영상 정합 방법의 복잡도는 특징 매칭 (Feature Matching) 단계에서 발생한다. 이 복잡도를 줄이기 위하여 본 논문에서는 특징 매칭이 영상의 인공구조물에서 검출된 특징점으로 매칭되는 것을 확인하여 특징점 검출기에서 검출된 특징점 중에서 인공구조물에서 검출된 특징점만 필터링하는 방법을 제안한다. 딥러닝 기반 특징점 필터링은 영상 정합을 위하여 필수적인 특징점을 잃지 않으면서 그 수를 줄이기 위하여 인공구조물의 경계와 인접한 특징점을 보존하고, 축소한 영상을 사용하며, 영상 분할(Image Segmentation) 방법의 결과에서 생기는 영상 패치 경계의 잡음을 제거하기 위하여 영상 패치를 중복하여 잘라 냄으로써 정합 속도와 정확도를 향상시킨다. 영상 정합 고속화 방법을 의 성능을 검증하기 위하여 아리랑 3 호 위성 원격 탐사 영상을 사용하여 기존 특징점 추출 방법과 속도와 정확도를 비교하였다. 딥러닝 기반 영상 정합 방법을 기준으로 하여 비교하였을 때 특징점의 수를 약 82% 감소시키면서 속도를 약 9.17 배 향상시켰지만 정확도가 0.985 에서 0.855 으로 저하되었다.

  • PDF

구조물 검출 네트워크 및 특징점 필터링을 이용한 원격 탐사 영상 정합 (Remote Sensing Image Registration using Structure Extraction and Keypoint Filtering)

  • 성준영;이우주;오승준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.300-304
    • /
    • 2020
  • 본 논문에서는 원격 탐사 영상 정합에서 정확도는 유지하면서 특징점 매칭 (Matching) 복잡도를 줄이기 위해 입력 영상을 전처리하는 구조물 검출 네트워크를 이용한 원격 탐사 영상 정합 방법을 제안한다. 영상 정합의 기존 방법은 입력 영상에서 특징점을 추출하고 설명자 (Descriptor)를 생성한다. 본 논문에서 제안하는 방법은 입력 영상에서 특징점 매칭에 영향을 미치는 구조물만 추출하여 새로운 영상을 만들어 특징점을 추출한다. 추출된 특징점은 필터링 (Filtering)을 거쳐 원본 영상에 매핑 (Mapping)되어 설명자를 생성하여 특징점 매칭 속도를 향상시킨다. 또한 구조물 검출 네트워크에서 학습 영상과 시험 영상의 특성의 차이로 생기는 성능 저하 문제를 개선하기 위해 히스토그램 매핑 기법을 이용한다. 아리랑 3 호가 획득한 원격 탐사 영상에 대한 실험을 통해 제안하는 방법은 정확도를 유지하면서 계산 시간을 SURF 보다 87.5%, SIFT 보다 92.6% 감소시킬 수 있다.

  • PDF

다중 스케일 영상 공간에서 특징점 클러스터를 이용한 영상스케일 예측 (Image Scale Prediction Using Key-point Clusters on Multi-scale Image Space)

  • 류권열
    • 융합신호처리학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2018
  • 본 논문에서는 다중 스케일 영상 공간에서 특징점 검출을 위해 수행되는 반복적인 과정을 제거하는 방법을 제안한다. 제안한 방법은 원 영상으로부터 특징점을 검출하고, 클러스터 필터를 이용하여 유효한 특징점을 선별하고, 특징점 클러스터를 생성한다. 그리고 특징점 클러스터의 방향 각도를 이용하여 참조 객체를 선별하고, 분산 거리 비율을 이용하여 원 영상의 스케일을 예측한다. 예측한 스케일에 따라 참조 영상의 스케일을 변환하고, 변환된 참조 영상에 대해 특징점 검출을 적용한다. 실험 결과 제안한 방법은 다중 스케일 영상을 사용하는 SIFT 방법 및 Scaled ORB 방법에 비해 특징점 검출 시간이 각각 75% 및 71% 향상됨을 알 수 있었다.

도시 영상에서의 Inlier 선택과 Database Redundancy 감소 기법 (Inlier selection and Database Redundancy Reducing Method in Urban Environment)

  • 안하은;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 하계학술대회
    • /
    • pp.29-32
    • /
    • 2016
  • 특징점 기반 건물인식 시스템에서는 강건한 특징점을 추출하는 것이 인식률 향상에 바로 직결되는 중요한 요소이다. 영상에서 특징점들이 너무 많이 추출되는 경우 인식이나 학습단계에서의 알고리즘 수행 시간을 증가시키는 원인이 된다. 또환 중요하지 않은 특징점(배경이나 가려짐 영역, 기타 객체에서 추출된 특징점)이나 조명 변화에 민감한 영역에서 임의로(arbitrarily) 추출된 특징점은 인식률을 저하시키는 문제를 발생시킨다. 특히 도시환경에서 촬영된 영상의 특징점을 추출할 때 이러한 문제 현상들이 빈번하게 발생한다. 본 논문에서는 이러한 문제를 해결하고자 multi-view 영상에서 건물의 homography를 기반으로 정확히 정합된 특징점인 inlier만을 선택하는 알고리즘을 제안한다. Inlier로 분류된 특징점들은 건물 인식 시스템을 구성하기 위해 사용되고 조명 변화에 민감한 영역에서 임의로 추출된 특징점들은 영역 기반 특징을 추출하여 건물 인식 시스템의 인식률을 높인다. 또한 이를 이용하여 인식하고자 하는 건물과의 상관관계가 적은 잉여 영상들을 DB에서 제거하는 방법도 제안한다. 실험을 통하여 제안하는 기법의 우수성을 보였다.

  • PDF

동적 프로그래밍을 이용한 특징점 정합 (Matching Of Feature Points using Dynamic Programming)

  • 김동근
    • 정보처리학회논문지B
    • /
    • 제10B권1호
    • /
    • pp.73-80
    • /
    • 2003
  • 본 논문에서는 기준영상과 탐색영상 사이의 대응되는 특징 점을 정합 하는 알고리즘을 제안한다. 두 영상에서 특징 점을 찾기 위하여 Harris의 코너 점 검출기를 사용하였다. 기준영상의 각 특징 점에 대해, 정규상관계수가 임계치 이상인 탐색영상의 특징 점들로 후보 정합 점을 구한다. 최종적으로 동적 프로그래밍을 사용하여 후보 정합 점들 중에서 대응되는 특징 점을 구한다. 실험으로 인위적인 영상과 실제 영상에서 특징 점을 정합 하는 결과를 보였다.

3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합 (Online Multi-view Range Image Registration using Geometric and Photometric Features)

  • 백재원;박순용
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.1000-1005
    • /
    • 2007
  • 본 논문에서는 실물체의 3차원 모델을 복원하기 위해 거리영상 카메라에서 획득된 3차원 점군에 대한 온라인 정합 기법을 제안한다. 제안하는 방법은 거리영상 카메라를 사용하여 연속된 거리영상과 사진영상을 획득하고 문턱값(threshold)을 이용하여 물체와 배경에 대한 정보를 분류한다. 거리영상에서 특징점을 선택하고 특징점에 해당하는 거리영상의 3차원 점군을 이용하여 투영 기반 정합을 실시한다. 초기정합이 종료되면 사진영상간의 대응점을 추적하여 거리영상을 정제하는 과정을 거치는데 대응점 추적에 사용되는 KLT(Kanade-Lucas-Tomasi) 추적기를 수정하여 초기정합의 결과를 대응점 탐색에 이용함으로써 탐색의 속도와 성공률을 증가시켰다. 특징점과 추적된 대응점에 해당하는 3차원 점군을 이용하여 거리영상의 정제를 수행하고 정합이 완료되면 오프라인에서 3차원 모델을 합성하였다. 제안한 알고리듬을 적용하여 2개의 실물체에 대하여 실험을 수행하고 3차원 모델을 생성하였다.

  • PDF

카메라 센서 정보 기반 이미지 클러스터링을 이용한 360 VR 이미지 제작 (360 VR Image Stitching Algorithm using Image Clustering based on Camera Sensor Data)

  • 정우경;한종기
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.73-75
    • /
    • 2019
  • 360°VR 영상은 카메라에서 촬영된 여러 영상들을 이어 붙이는 작업인 스티칭(Stitching)을 통하여 만들 수 있다. 스티칭은 영상들을 이어 붙이기 위해 각 영상의 특징점을 추출하는 특징점 추출, 특징점간 유사도를 비교하여 유사한 특징점끼리 매칭시키는 특징점 매칭, 특징점 매칭 과정에서 획득한 호모그래피 매트릭스를 이용한 이미지 와핑, 각 영상 간의 부자연스러운 경계선을 제거하는 블렌딩 과정을 거친다. 고품질의 360°VR 영상을 획득하기 위해서는 영상의 개수를 증가시킬 필요가 있고, 이로 인해 스티칭 과정에서 소요되는 시간이 증가한다. 본 논문에서는 카메라 센서 정보를 이용해 유사한 영상끼리 클러스터링하여, 한번에 스티칭이 진행되는 영상의 수를 감소시키고, 멀티 스레드를 이용하여 각 그룹의 스티칭을 병렬적으로 진행한 뒤, 최종적으로 스티칭하여 최종 360°VR 영상을 획득하는 과정을 제안한다.

  • PDF

특징창과 특징링크를 이용한 스테레오 특징점의 정합 성능 향상 (Enhancement of Stereo Feature Matching using Feature Windows and Feature Links)

  • 김창일;박순용
    • 정보처리학회논문지B
    • /
    • 제19B권2호
    • /
    • pp.113-122
    • /
    • 2012
  • 스테레오 정합(stereo matching) 기술은 주어진 두 영상에서 동일한 물체의 영상점이 어떤 위치 관계를 가지고 있는지를 결정하는 기술이다. 본 논문에서는 영상 특징점에 대해 스테레오 위치관계를 결정하는 새로운 스테레오 특징점 정합(stereo feature matching) 방법을 제시한다. 제안하는 방법은 주어진 스테레오 영상에서 FAST 추출기를 이용하여 특징점을 추출하고, 특징점 벡터들의 정보들을 내부에 포함하는 특징창(feature window)이라는 공간을 정의하여 스테레오 정합의 성능을 향상한다. 제안하는 방법은 표준 영상에 추출된 특징점들에 대해 특징창을 생성하고, 참조 영상에서 표준 영상의 특징창과 가장 유사한 특징창을 탐색 및 결정한 다음, 결정된 두 개의 특징창 내부의 특징점들의 시차관계는 특징링크(feature link)를 생성하여 시차를 결정한다. 만약, 이 과정에서 시차가 결정되지 않은 특징점들이 있다면, 특징창 내의 결정된 시차 정보를 이용하여 시차 값을 보간한다. 마지막으로, 제안하는 방법의 성능을 검증하기 위해 결과 영상과 정답 영상의 시차를 비교하여 정합 정확성과 수행시간을 비교하였다. 또한, 기존의 특징점 기반 스테레오 정합 방법들과 제안하는 방법의 성능을 비교 및 분석하였다.

FAST와 BRIEF 기반의 실시간 특징점 매칭 알고리즘 (FAST and BRIEF based Real-Time Feature Matching Algorithms)

  • 김승룡;유훈재;손광훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 추계학술대회
    • /
    • pp.1-4
    • /
    • 2012
  • 영상 매칭 기술은 컴퓨터 비전 분야에서 다양하게 응용될 수 있는 기초적인 기술 중에 하나이다. 대표적인 영상 매칭 기술인 SIFT나 SURF는 강인한 영상 매칭 성능을 나타내지만 계산량이 방대하여 실시간 기술에 사용될 수 없는 문제점을 가진다. 최근에 ORB나 BRISK는 FAST 특징점 검출기와 BRIEF 특징점 표현자를 조합하여 실시간 영상 매칭을 가능하게 하면서 기존의 영상 매칭 기술과 견줄만한 성능을 나타내었다. 본 논문에서는 FAST와 BRIEF를 수정하여 영상 왜곡에 강인하면서 실시간으로 매칭을 수행할 수 있는 영상 매칭 알고리즘을 제안한다. 노이즈에 강인하면서 스케일 변화를 고려하기 위하여 특징점 후보 영역을 제한하고 스케일 공간을 생성하여 특징점을 검출한다. 또한 영상의 회전 변화에 강인한 영상 매칭을 가능하게 하기 위하여 주변 픽셀 패턴의 Gradient로 특징점 방향을 결정하여 픽셀 밝기 값 비교로 이진 특징점 표현자를 생성한다. 제안하는 영상 매칭 알고리즘은 적은 계산량으로 기존의 알고리즘보다 우수한 영상 매칭 성능을 나타낸다. 특별히 노이즈가 존재하는 영상의 매칭에서 노이즈의 영향에 강인한 매칭 성능을 보여준다.

  • PDF

단점과 분기점을 이용한 세선화 영상 복원 (Thinning image restoration using ending and bifurcation point)

  • 김강;이건익
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2010년도 제42차 하계학술발표논문집 18권2호
    • /
    • pp.217-220
    • /
    • 2010
  • 본 논문에서는 단점과 분기점을 이용한 세선화 영상 복원에 관하여 연구하였다. 이진 지문영상으로부터 평활화, 이진화, 세선화 과정을 거쳐서 세선화 영상을 얻는다. 세선화 영상으로부터 특징점을 추출하는 방법에는 교차수를 이용한 방법이 있다. 그러나 교차수를 이용한 방법에서는 많은 의사 특징점들이 추출된다. 의사특징점으로는 단선, 절선, 잔가지, 원형 등이 있으며, 단점과 분기점을 이용하여 의사특징점을 제거함으로써 세선화 영상을 복원하였다.

  • PDF