• Title/Summary/Keyword: 영상 전처리

Search Result 1,103, Processing Time 0.028 seconds

Detection of Drought Stress in Soybean Plants using RGB-based Vegetation Indices (RGB 작물 생육지수를 활용한 콩 한발 스트레스 판별기술 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Baek, Jae-Kyeong;Kwon, Dongwon;Ban, Ho-Young;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.340-348
    • /
    • 2021
  • Continuous monitoring of RGB (Red, Green, Blue) vegetation indices is important to apply remote sensing technology for the estimation of crop growth. In this study, we evaluated the performance of eight vegetation indices derived from soybean RGB images with various agronomic parameters under drought stress condition. Drought stress influenced the behavior of various RGB vegetation indices related soybean canopy architecture and leaf color. In particular, reported vegetation indices such as ExGR (Excessive green index minus excess red index), Ipca (Principal Component Analysis Index), NGRDI (Normalized Green Red Difference Index), VARI (Visible Atmospherically Resistance Index), SAVI (Soil Adjusted Vegetation Index) were effective tools in obtaining canopy coverage and leaf chlorophyll content in soybean field. In addition, the RGB vegetation indices related to leaf color responded more sensitively to drought stress than those related to canopy coverage. The PLS-DA (Partial Squares-Discriminant Analysis) results showed that the separation of RGB vegetation indices was distinct by drought stress. The results, yet preliminary, display the potential of applying vegetation indices based on RGB images as a tool for monitoring crop environmental stress.

Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images (형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지)

  • Kim, Hwisong;Kim, Duk-jin;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.793-810
    • /
    • 2022
  • Synthetic Aperture Radar (SAR) is considered to be suitable for near real-time inundation monitoring. The distinctly different intensity between water and land makes it adequate for waterbody detection, but the intrinsic speckle noise and variable intensity of SAR images decrease the accuracy of waterbody detection. In this study, we suggest two modules, named 'morphology module' and 'edge-enhanced module', which are the combinations of pooling layers and convolutional layers, improving the accuracy of waterbody detection. The morphology module is composed of min-pooling layers and max-pooling layers, which shows the effect of morphological transformation. The edge-enhanced module is composed of convolution layers, which has the fixed weights of the traditional edge detection algorithm. After comparing the accuracy of various versions of each module for U-Net, we found that the optimal combination is the case that the morphology module of min-pooling and successive layers of min-pooling and max-pooling, and the edge-enhanced module of Scharr filter were the inputs of conv9. This morphologic and edge-enhanced U-Net improved the F1-score by 9.81% than the original U-Net. Qualitative inspection showed that our model has capability of detecting small-sized waterbody and detailed edge of water, which are the distinct advancement of the model presented in this research, compared to the original U-Net.

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • Noise generated during the acquisition and transmission of CT images acts as a factor that degrades image quality. Therefore, noise removal to solve this problem is an important preprocessing process in image processing. In this paper, we remove noise by using a deformable convolutional autoencoder (DeCAE) model in which deformable convolution operation is applied instead of the existing convolution operation in the convolutional autoencoder (CAE) model of deep learning. Here, the deformable convolution operation can extract features of an image in a more flexible area than the conventional convolution operation. The proposed DeCAE model has the same encoder-decoder structure as the existing CAE model, but the encoder is composed of deformable convolutional layers and the decoder is composed of conventional convolutional layers for efficient noise removal. To evaluate the performance of the DeCAE model proposed in this paper, experiments were conducted on CT images corrupted by various noises, that is, Gaussian noise, impulse noise, and Poisson noise. As a result of the performance experiment, the DeCAE model has more qualitative and quantitative measures than the traditional filters, that is, the Mean filter, Median filter, Bilateral filter and NL-means method, as well as the existing CAE models, that is, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) and SSIM. (Structural Similarity Index Measure) showed excellent results.

The Container Pose Measurement Using Computer Vision (컴퓨터 비젼을 이용한 컨테이너 자세 측정)

  • 주기세
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.702-707
    • /
    • 2004
  • This article is concerned with container pose estimation using CCD a camera and a range sensor. In particular, the issues of characteristic point extraction and image noise reduction are described. The Euler-Lagrange equation for gaussian and random noise reduction is introduced. The alternating direction implicit(ADI) method for solving Euler-Lagrange equation based on partial differential equation(PDE) is applied. The vertex points as characteristic points of a container and a spreader are founded using k order curvature calculation algorithm since the golden and the bisection section algorithm can't solve the local minimum and maximum problems. The proposed algorithm in image preprocess is effective in image denoise. Furthermore, this proposed system using a camera and a range sensor is very low price since the previous system can be used without reconstruction.

Implementation of Intelligent Image Surveillance System based Context (컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구)

  • Moon, Sung-Ryong;Shin, Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • This paper is a study on implementation of intelligent image surveillance system using context information and supplements temporal-spatial constraint, the weak point in which it is hard to process it in real time. In this paper, we propose scene analysis algorithm which can be processed in real time in various environments at low resolution video(320*240) comprised of 30 frames per second. The proposed algorithm gets rid of background and meaningless frame among continuous frames. And, this paper uses wavelet transform and edge histogram to detect shot boundary. Next, representative key-frame in shot boundary is selected by key-frame selection parameter and edge histogram, mathematical morphology are used to detect only motion region. We define each four basic contexts in accordance with angles of feature points by applying vertical and horizontal ratio for the motion region of detected object. These are standing, laying, seating and walking. Finally, we carry out scene analysis by defining simple context model composed with general context and emergency context through estimating each context's connection status and configure a system in order to check real time processing possibility. The proposed system shows the performance of 92.5% in terms of recognition rate for a video of low resolution and processing speed is 0.74 second in average per frame, so that we can check real time processing is possible.

A Study on the Determination of Exterior Orientation of SPOT Imagery (SPOT 위성영상(衛星映像)의 외부표정요소(外部標定要素) 결정(決定)에 관한 연구(硏究))

  • Yeu, Bock Mo;Cho, Gi Sung;Kwon, Hyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.77-85
    • /
    • 1990
  • The application of remote sensing in small scale mapping has recently been widened to various fields such as information analysis of landuse, environmental conservation and natural resources. SPOT imagery, in particular, offers data which can be processed for 3-dimensional point determination. This is made possible by its high resolution, appropriate swatch width/altitude ratio and stereo imaging capabilities. This study aims to develop a suitable polymonial and an algorithm in the determination of exterior orientation which is essential in the 3-dimensional point determination of SPOT imgery. An algorithm is presented in this study to determine the exterior orientation of a preprocessed level lB film of the satellite image. It was found that a polynominal of 15 parameters is the best fit polynominal for exterior orientation determination, where 1st order line function is used for positon ($X_o$, $Y_o$, $Z_o$) and 2nd order line function is used for orientation (${\kappa}_o$, ${\phi}_o$, ${\omega}_o$).

  • PDF

Solar Irradiance Estimation in Korea by Using Modified Heliosat-II Method and COMS-MI Imagery (수정된 Heliosat-II 방법과 COMS-MI 위성 영상을 이용한 한반도 일사량 추정)

  • Won Seok, Choi;Ah Ram, Song;Il, Kim Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.463-472
    • /
    • 2015
  • Solar radiation data are important data that can be used as basic research data in diverse areas. In particular, solar radiation data are essential for diverse studies that have been recently conducted in South Korea including those for new and renewable energy resource map making and crop yield forecasting. So purpose of this study is modification of Heliosat-II method to estimate solar irradiance in Korea by using COMS-MI imagery. For this purpose, in this study, errors appearing in ground albedo images were corrected through linear transformation. And method of producing background albedo map which is used in Heliosat-II method is modified to get more finely tuned one. Through the study, ground albedo correction could be successfully performed and background albedo maps could be successfully derived. Lastly, In this study, solar irradiance was estimated by using modified Heliostat-II method. And it was compared with actually measured values to verify the accuracy of the methods. Accuracy of estimated solar irradiance was 30.8% RMSE(%). And this accuracy level means that solar irradiance was estimated on 10% higher level than previous Heliosat-II method.

Voice Activity Detection using Motion and Variation of Intensity in The Mouth Region (입술 영역의 움직임과 밝기 변화를 이용한 음성구간 검출 알고리즘 개발)

  • Kim, Gi-Bak;Ryu, Je-Woong;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.519-528
    • /
    • 2012
  • Voice activity detection (VAD) is generally conducted by extracting features from the acoustic signal and a decision rule. The performance of such VAD algorithms driven by the input acoustic signal highly depends on the acoustic noise. When video signals are available as well, the performance of VAD can be enhanced by using the visual information which is not affected by the acoustic noise. Previous visual VAD algorithms usually use single visual feature to detect the lip activity, such as active appearance models, optical flow or intensity variation. Based on the analysis of the weakness of each feature, we propose to combine intensity change measure and the optical flow in the mouth region, which can compensate for each other's weakness. In order to minimize the computational complexity, we develop simple measures that avoid statistical estimation or modeling. Specifically, the optical flow is the averaged motion vector of some grid regions and the intensity variation is detected by simple thresholding. To extract the mouth region, we propose a simple algorithm which first detects two eyes and uses the profile of intensity to detect the center of mouth. Experiments show that the proposed combination of two simple measures show higher detection rates for the given false positive rate than the methods that use a single feature.

Estimation of Populations of Moth Using Object Segmentation and an SVM Classifier (객체 분할과 SVM 분류기를 이용한 해충 개체 수 추정)

  • Hong, Young-Ki;Kim, Tae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.705-710
    • /
    • 2017
  • This paper proposes an estimation method of populations of Grapholita molestas using object segmentation and an SVM classifier in the moth images. Object segmentation and moth classification were performed on images of Grapholita molestas moth acquired on a pheromone trap equipped in an orchard. Object segmentation consisted of pre-processing, thresholding, morphological filtering, and object labeling process. The classification of Grapholita molestas in the moth images consisted of the training and classification of an SVM classifier and estimation of the moth populations. The object segmentation simplifies the moth classification process by segmenting the individual objects before passing an input image to the SVM classifier. The image blocks were extracted around the center point and principle axis of the segmented objects, and fed into the SVM classifier. In the experiments, the proposed method performed an estimation of the moth populations for 10 moth images and achieved an average estimation precision rate of 97%. Therefore, it showed an effective monitoring method of populations of Grapholita molestas in the orchard. In addition, the mean processing time of the proposed method and sliding window technique were 2.4 seconds and 5.7 seconds, respectively. Therefore, the proposed method has a 2.4 times faster processing time than the latter technique.

An Object Detection and Tracking System using Fuzzy C-means and CONDENSATION (Fuzzy C-means와 CONDENSATION을 이용한 객체 검출 및 추적 시스템)

  • Kim, Jong-Ho;Kim, Sang-Kyoon;Hang, Goo-Seun;Ahn, Sang-Ho;Kang, Byoung-Doo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.87-98
    • /
    • 2011
  • Detecting a moving object from videos and tracking it are basic and necessary preprocessing steps in many video systems like object recognition, context aware, and intelligent visual surveillance. In this paper, we propose a method that is able to detect a moving object quickly and accurately in a condition that background and light change in a real time. Furthermore, our system detects strongly an object in a condition that the target object is covered with other objects. For effective detection, effective Eigen-space and FCM are combined and employed, and a CONDENSATION algorithm is used to trace a detected object strongly. First, training data collected from a background image are linear-transformed using Principal Component Analysis (PCA). Second, an Eigen-background is organized from selected principal components having excellent discrimination ability on an object and a background. Next, an object is detected with FCM that uses a convolution result of the Eigen-vector of previous steps and the input image. Finally, an object is tracked by using coordinates of an detected object as an input value of condensation algorithm. Images including various moving objects in a same time are collected and used as training data to realize our system that is able to be adapted to change of light and background in a fixed camera. The result of test shows that the proposed method detects an object strongly in a condition having a change of light and a background, and partial movement of an object.