Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.10a
/
pp.328-330
/
2015
Edge is a characteristic information that can easily obtain the size, direction and location of objects included in the image, and the edge detection is utilized as a preprocess processing in various image processing application sectors such as object detection and object recognition, etc. For the conventional edge detection methods, there are Sobel, Prewitt and Roberts. These existing edge detection methods are easy to implement but the edge detection characteristics are somewhat insufficient as fixed weighted mask is applied. Therefore, in order to compensate the problems of existing edge detection methods, in this paper, an edge detection algorithm was proposed after applying the weighted value according to the standard deviation and means within the local mask.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.255-257
/
2018
Recently, as the frequency of use of video media increases in various fields, the importance of signal processing is increasing. However, many kinds of noise are generated in the transmission and reception process and affect the information of the signal. For this reason, the noise removal is essential as a preprocessing process. In this paper, we propose an algorithm to remove mixed noise of impulse noise and AWGN. The proposed algorithm restores the image through noise determination and pixel change for efficient noise removal. Unlike the conventional method, noise is removed by minimizing both noise effects. Simulation showed excellent noise removal characteristic results were compared and analyzed using the PSNR for such decisions.
The Journal of the Korea institute of electronic communication sciences
/
v.10
no.2
/
pp.267-274
/
2015
In this paper the optimal structure of a neural network based on OpenCV for a golf ball recognition and the intensity of ROI(Region Of Interest) are calculated. The system is composed of preprocess, image processing and machine learning, and a learning model is obtained by multi-layer perceptron using the inputs of 7 Hu's invariant moments, box ration extracted by vertical and horizontal length or ${\pi}$ calculated by area of ROI. Simulation results show that optimal numbers of hidden layer and the node of neuron are selected to 2 and 9 respectively considering the recognition rate and running time, and optimal intensity of ROI is selected to 200.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2010.05a
/
pp.160-161
/
2010
In this paper, trademark image retrieval system is proposed by using color information and shape information. We use the image for a color information by dividing into the area and extracting the area color distribution histogram. We use for the shape information by preprocessing of the boundary extraction, the centroid extraction, angular sampling etc. and calculating of the sum of the distance from the centroid to the boundary, the standard deviation, and the rate of long axis to short axis. In particular, centroid by using the angular sampling can extract feature and reduce the processing time. Users can perform searchs using the color and shape information, and also the two methods by mixing can be used by weighting.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.49
no.10
/
pp.883-892
/
2021
This paper provides a process for developing deep learning-based aerial object detection models that can run in realtime on onboard. To improve object detection performance, we pre-process and augment the training data in the training stage. In addition, we perform transfer learning and apply a weighted cross-entropy method to reduce the variations of detection performance for each class. To improve the inference speed, we have generated inference acceleration engines with quantization. Then, we analyze the real-time performance and detection performance on custom aerial image dataset to verify generalization.
Kim, Jongho;Lee, Dae Yeol;Cho, Seunghyun;Jeong, Seyoon;Choi, Jinsoo;Kim, Hui-Yong
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.213-216
/
2018
본 논문에서는 사람의 인지 시각 특성 중 하나인 JND(Just Noticeable Difference)를 이용한 인지 비디오 부호화 기법을 제안한다. JND 기반 인지 부호화 방법은 사람의 인지 시각 특성을 이용해 시각적으로 인지가 잘 되지 않는 인지 신호를 제거함으로 부호화 효율을 높이는 방법이다. 제안된 방법은 기존 수학적 모델 기반의 JND 기법이 아닌 최근 각광 받고 있는 데이터 중심(data-driven) 모델링 방법인 심층 신경망 기반 JND 모델 생성 기법을 제안한다. 제안된 심층 신경망 기반 JND 모델은 비디오 부호화 과정에서 입력 영상에 대한 전처리를 통해 입력 영상의 인지 중복(perceptual redundancy)를 제거하는 역할을 수행한다. 부호화 실험에서 제안된 방법은 동일하거나 유사한 인지화질을 유지한 상태에서 평균 16.86 %의 부호화 비트를 감소 시켰다.
The Journal of Korean Institute of Information Technology
/
v.17
no.5
/
pp.77-82
/
2019
Diabetic retinopathy is a complicated form of diabetes due to circulatory disorder in the peripheral blood vessels of the retina. We segment the microvessel for diagnosing diabetic retinophathy. The conventional methods using filter and features can segment the thick blood vessels, but it has relatively weak for segmenting fine blood vessels. In pre-processing step, noise reduction filter and histogram equalization are applied to suppress the noise and enhance the image contrast. Then, deep learning technique is used for pixel-by-pixel segmentation. The accuracy of conventional methods is between 90% to 94%, while the proposed method has improved as 95% accuracy. There is a problem of segmentation error around the optic disc and exudate due to the network depth. However the accuracy can be improved by modifying the network architecture in the future.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.425-427
/
2022
The grade of glioma is important information related to survival and thus is important to classify the grade of glioma before treatment to evaluate tumor progression and treatment planning. Glioma grading is mostly divided into high-grade glioma (HGG) and low-grade glioma (LGG). In this study, image preprocessing techniques are applied to analyze magnetic resonance imaging (MRI) using the deep neural network model. Classification performance of the deep neural network model is evaluated. The highest-performance EfficientNet-B6 model shows results of accuracy 0.9046, sensitivity 0.9570, specificity 0.7976, AUC 0.8702, and F1-Score 0.8152 in 5-fold cross-validation.
Bang, Young Jun;Jung, Hyo Jun;Chegal, Sun-Dong;Lee, Seung Oh
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.197-197
/
2021
최근 기후변화와 하천 제방의 노후화로 인해 수재해 위험이 지속적으로 증가하고 있다. 그러나 기존의 재래적인 하천 제방의 점검은 많은 인력과 예산 소모로 비효율적이며 제방 전구간 점검의 한계, 객관성의 한계 등 많은 한계점들이 존재하여 효과적인 홍수 대응을 위해 새로운 모니터링과 예/경보 시스템의 구축이 반드시 필요한 상황이다. 따라서 본 연구는 인공위성을 이용한 하천 제방 변위 산출과 수문학적 요인과의 관계 분석을 통해 하천 제방 건강상태 모니터링 시스템 방안을 제안하고자 한다. Sentinel-1 SAR 영상과 유럽 우주국(ESA)의 위성 영상 전처리 도구인 SNAP을 이용하여 2020년 여름 붕괴된 남원시의 금곡교 제방의 봄(4~5월), 여름(7~8월)의 변위를 산출하였고, 제방의 위험도 산정을 위해 토양수분관계를 분석하였다. 선행 연구(김상우,2019)에서는 농촌진흥청에서 제공하는 TDR(Time Domain Reflectrometry) 관측값과 Sentinel-1 SAR의 후방 산란계수의 토양수분관계가 일치하는 경향을 제시하여, 본 연구에서는 이를 이용하여 제방 후 방산란계수를 산출하고 변위와 토양수분도의 상관관계를 분석하여 변위 추세와 토양수분도의 추세가 일치하는 경향을 확인하였다. 본 연구 결과를 통해 향후에는 위성을 이용하여 산출한 제방의 변위와 토양수분도의 불확실성을 보완하고 기온, 수위, 토양도, 지하수위와 같은 수문기상학적 데이터의 분석을 통해 초정밀, 자동화 하천 제방 건강상태 모니터링 시스템이 구현 가능할 것으로 기대한다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.71-71
/
2020
최근 기후변화의 영향으로 극심한 가뭄과 홍수가 발생하고 기온 또한 꾸준히 상승하고 있으며, 이러한 변화에 대응하기 위해 전 세계에서 이산화탄소를 줄이고 국제 에너지 시장을 재구성하려는 시도가 꾸준히 이루어지고 있다. World Energy Outlook(2012)에 따르면 특히 에너지 시장에서 개발도상국의 수력분야 개발투자가 2035년까지 15,490억 달러에 이를 것으로 전망됨에 따라 국내에서 해외 수력발전사업에 적극적으로 나서고 있다. 그러나 국내와는 달리 댐 건설의 사전조사에 필요한 자료가 없거나 구축하는데 문제가 있어 손쉽게 구할 수 있는 자료로 사전에 수력발전 댐 적지를 조사할 수 있는 기술의 개발이 필요하다. 따라서 본 연구에서는 수력발전용 댐 위치 결정을 위한 예비 적지 분석 알고리즘을 개발하고, 분석 알고리즘에 위성영상자료인 30m 해상도의 ASTGTM(ASTER Global Digital Elevation Model)와 500m 해상도의 MCD12Q1(MODIS/Terra Aqua Land Cover) 토지피복자료를 사용하고자 한다. 예비 적지 분석 알고리즘은 DEM의 전처리, 하천망생성, 유역분할과 지형정보를 고려한 자동적지탐색과 댐 건설시 수몰면적에 따른 보상면적 산정 알고리즘을 포함하고 있으며 Python기반의 오픈소스 GIS로 구현되었다. 적지산정은 DEM으로부터 낙차, 도달시간, 내용적곡선과 같은 지형정보와 토지피복도를 통한 보상면적을 기반으로 순위를 매겨 사용자에게 최적의 위치들을 표출한다. 본 연구의 결과는 향후 해외 수력 댐 적지 예비분석 및 해외 수력산업 진출을 지원할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.