• Title/Summary/Keyword: 영상 전처리

Search Result 1,103, Processing Time 0.026 seconds

A Study on Face Recognition using Apaptive Filter (적응적 필터를 사용한 얼굴 인식에 관한 연구)

  • 남미영;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.223-225
    • /
    • 2004
  • 얼굴 인식 및 검출에 있어서 어려운 문제가 조명의 변화와 포즈의 변화에 따른 성능 면에서의 신뢰성이다. 이러한 상황(Context)의 변화를 고려하여 영상을 처리하기 위하여 얼굴 영상에 주어진 조명의 상황을 SOM으로 분석하며, 영상에 따라 다른 전처리 기법의 필요성에 대해 제안한다. SOM은 비 지도학습으로써 얼굴 이미지들을 수집하여 그룹화 함으로써 상황분석을 위한 알고리즘으로 활용한다 이는 상황분석 기법을 적용하기 위한 응용에 활용할 수 있으며, 적절한 전처리 기법은 얼굴 인식의 성능을 향상시킴을 알 수 있었다.

  • PDF

Huffman Coding using Nibble Run Length Code (니블 런 랭스 코드를 이용한 허프만 코딩)

  • 백승수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • In this paper We propose the new lossless compression method which use Huffman Coding using the preprocessing to compress the still image. The proposed methode divide into two parts according to activity of the image. If activities are high, the original Huffman Coding method was used directly. IF activities are low, the nibble run-length coding and the bit dividing method was used. The experimental results show that compression rate of the proposed method was better than the general Huffman Coding method.

  • PDF

Improvement of Face Recognition Rate by Preprocessing Based on Elliptical Model (타원 모델기반의 전처리 기법에 의한 얼굴 인식률 개선)

  • Won, Chul-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.4
    • /
    • pp.56-63
    • /
    • 2008
  • Image calibration at preprocessing step is very important for face recognition rate improvement, and background noise deletion affects accuracy of face recognition specially. In this paper, a method is proposed to remove background area utilizing elliptical model at preprocessing step for face recognition rate improvement. As human face has the shape of ellipse, a face contour can be easily detected by using the elliptical model in face images.

  • PDF

Image classification method using Independent Component Analysis, Neighborhood Averaging and Normalization (독립성분해석 기법과 인근평균 및 정규화를 이용한 영상분류 방법)

  • Hong, Jun-Sik;Yu, Jeong-Ung;Kim, Seong-Su
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.389-394
    • /
    • 2001
  • 본 논문에서는 독립 성분 해석(Independent Component Analysis, ICA) 기법과 인근 평균 및 정규화를 이용한 영상 분류 방법을 제안하였다. ICA에 잡음을 주어 영상을 분류하였을 때, 잡음에 대한 강인성을 증가시키기 위하여, 제안된 인근 평균 및 정규화를 전처리로 적용하였다. 제안된 방법은 전처리 없이 ICA에 주성분 해석(Principal Component Analysis, PCA)을 이용한 것에 비해 잡음에 대한 강인성을 증가시키는 것을 모의 실험을 통하여 확인하였다.

  • PDF

A Study on the Fingerprint Recognition Preprocessing using adaptive binary method (적응 이진화를 이용한 지문인식 전처리에 관한 연구)

  • Cho, Seong-Wong;Kim, Jae-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.227-230
    • /
    • 2002
  • An important preprocessing for fingerprint recognition is the binarization operation, which takes as an input gray-scale image and returns a binary image as the output. The difficult in performing binarization is to find an appropriate threshold value. This paper presents a new adaptive binarization method, which determines the threshold value according to the brightness of local ridges and valleys. We experimentally show that the presented method results in better performance than a traditional method.

A Modified Gaussian Model-based Low Complexity Pre-processing Algorithm for H.264 Video Coding Standard (H.264 동영상 표준 부호화 방식을 위한 변형된 가우시안 모델 기반의 저 계산량 전처리 필터)

  • Song, Won-Seon;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2C
    • /
    • pp.41-48
    • /
    • 2005
  • In this paper, we present a low complexity modified Gaussian model based pre-processing filter to improve the performance of H.264 compressed video. Video sequence captured by general imaging system represents the degraded version due to the additive noise which decreases coding efficiency and results in unpleasant coding artifacts due to higher frequency components. By incorporating local statistics and quantization parameter into filtering process, the spurious noise is significantly attenuated and coding efficiency is improved for given quantization step size. In addition, in order to reduce the complexity of the pre-processing filter, the simplified local statistics and quantization parameter are introduced. The simulation results show the capability of the proposed algorithm.

Depth-map Preprocessing Algorithm Using Two Step Boundary Detection for Boundary Noise Removal (경계 잡음 제거를 위한 2단계 경계 탐색 기반의 깊이지도 전처리 알고리즘)

  • Pak, Young-Gil;Kim, Jun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.555-564
    • /
    • 2014
  • The boundary noise in image syntheses using DIBR consists of noisy pixels that are separated from foreground objects into background region. It is generated mainly by edge misalignment between the reference image and depth map or blurred edge in the reference image. Since hole areas are generally filled with neighboring pixels, boundary noise adjacent to the hole is the main cause of quality degradation in synthesized images. To solve this problem, a new boundary noise removal algorithm using a preprocessing of the depth map is proposed in this paper. The most common way to eliminate boundary noise caused by boundary misalignment is to modify depth map so that the boundary of the depth map can be matched to that of the reference image. Most conventional methods, however, show poor performances of boundary detection especially in blurred edge, because they are based on a simple boundary search algorithm which exploits signal gradient. In the proposed method, a two-step hierarchical approach for boundary detection is adopted which enables effective boundary detection between the transition and background regions. Experimental results show that the proposed method outperforms conventional ones subjectively and objectively.

Design of Real-Time PreProcessor for Image Enhancement of CMOS Image Sensor (CMOS 이미지 센서의 영상 개선을 위한 실시간 전처리 프로세서의 설계)

  • Jung, Yun-Ho;Lee, Joon-Hwan;Kim, Jae-Seok;Lim, Won-Bae;Hur, Bong-Soo;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.8
    • /
    • pp.62-71
    • /
    • 2001
  • This paper presents a design of the real-time digital image enhancement preprocessor for CMOS image sensor. CMOS image sensor offers various advantages while it provides lower-quality images than CCD does. In order to compensate for the physical limitation of CMOS sensor, the spatially adaptive contrast enhancement algorithm was incorporated into the preprocessor with color interpolation, gamma correction, and automatic exposure control. The efficient hardware architecture for the preprocessor is proposed and was simulated in VHDL. It is composed of about 19K logic gates, which is suitable for low-cost one-chip PC camera. The test system was implemented on Altera Flex EPF10KGC503-3 FPGA chip in real-time mode, and performed successfully.

  • PDF

Super-resolution Algorithm for Infra-red Images (IR 영상을 위한 초고해상도 알고리즘)

  • Kim, Yong Jun;Choi, Dong Yoon;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.152-153
    • /
    • 2015
  • 일반 영상의 영상확대를 위한 다양한 알고리즘이 존재한다. 하지만 IR 영상의 경우 일반영상과 다른 특성을 가지고 있기 때문에 IR 영상을 위한 영상 확대 알고리즘이 필요하다. 따라서 IR 영상이 일반영상에 비해 디테일이 없다는 특성을 고려하여 복잡한 알고리즘을 적용시키기 보다는 ADRC[1]와 같은 단순한 분류 기법을 활용하여 LR-HR 패치를 분류하고 학습된 데이터를 이용하여 영상확대 알고리즘에 적용하였다. 또한 알고리즘의 성능을 향상시키기 위해 학습과정에 전처리 과정을 추가하여 알고리즘 작동 시 연산량의 증가 없이 확대 영상의 선명도를 향상시키고자 하였다. 이와 같은 방법으로 영상 확대 알고리즘을 수행하였을 때 통상적인 영상확대 기법인 bi-cubic interpolation 기법보다 CPBD 수치가 평균 0.0527 만큼 높은 결과를 확인할 수 있었고 전처리 과정을 추가하였을 때 이전보다 평균 0.0119 만큼 더 선명해진 영상을 얻었다.

  • PDF

Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method (파노라마 고속화 생성을 위한 3차원 회전각 전처리와 가중치 블랜딩 기법)

  • Cho, Myeongah;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.23 no.2
    • /
    • pp.235-245
    • /
    • 2018
  • Recently panoramic image overcomes camera limited viewing angle and offers wide viewing angle by stitching plenty of images. In this paper, we propose pre-processing and post-processing algorithm which makes speed and accuracy improvements when making panoramic images. In pre-processing, we can get camera sensor information and use three-dimensional rotation angle to find RoI(Region of Interest) image. Finding RoI images can reduce time when extracting feature point. In post-processing, we propose weighted minimal error boundary cut blending algorithm to improve accuracy. This paper explains our algorithm and shows experimental results comparing with existing algorithms.