Image compression based on Wavelet gives much better quality than JPEG based on DCT, but suffers from ringing or blurring effects around edges as the compression is increased. In this paper, we proposed enhanced image compression by pre-processing wavelet coefficients. This pre-processing is performed by making a low threshold and enhanced by zerotree scan method when subband's zerotrees are established. It might increase significants coefficient by means of modifying the threshold and reflect on the orientation of subbands. Some experimental results show our method is more efficient than the conventional methods, JPEG. And then the developed coding scheme improves the quality of images and visually shows more pleasing results for most practical images.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.5
/
pp.70-77
/
1999
본 논문에서는 Wavelet을 이용한 위장 영상의 질환 부위 특징을 추출하여 질환 부위 패턴을 인식할 수 있는 알고리즘을 제안하였다. 전처리 과정으로서 위장 영상이 형태정보는 입력 영상을 DWT(Discrete wavelet transform)에 의해 4레벨 DWT 계수 행렬을 구하고 계수 행렬의 특징에 따라 저주파 계수 행렬로부터 저주파 특징 파라미터 32개, 수평 고주파 계수 행렬로부터 수평 고주파 특징 파라미터 16개, 수직 고주파 계수 행렬로부터 수직 고주파 특징 파라미터 16개, 그리고, 대각 고주파 계수 행렬로부터 대각 고주파 특징 파라미터 32개 등 모두 96개의 특징 파라미터를 추출한 후 각각의 특징 파라미터를 최대 값+0.5로 최소 값을 -0.5로 정규화 하여 신경회로망의 입력 벡터로 사용하였다. 위장 영상 패턴 인식을 위한 신경회로망은 교사 학습을 요구하는 다층 구조의 오차 역전파(Error back propagation)알고리즘으로 하였고 구조적 특성을 이용하여 입력층, 중간층, 출력층의 계층 구조로 설계하였다. 설계된 신경회로망의 학습은 학습계수를 0.2로 모우멘텀을 0.6으로 설정하여 출력층 최대오차가 0.01보다 작을 때까지 수행하였으며 약 8000회 정도 학습한 결과 설정값 보다 작은 결과를 얻었고 질환의 종류나 위치, 크기에 관계없이 100%의 인식률을 얻었다.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.6
/
pp.743-748
/
2009
In this paper, we propose an effective method to extract background components in automated vision inspection system for polarized film used in TFT LCD display panels. The test image signals are typically composed of three components such as ununiform background, random noises and target defect signals. It is important to analyze the background signal for accurate extraction of defect components. Two dimensional continuous wavelets with first derivative gaussian is used. This methods can be applied for reliable extraction of defect signal by elimination of the background signal from the original image. The proposed method outperforms over conventional FFT methods.
Automotive electronics system must alarm accurately in every moment. In order to apply vehicle's image recognition algorithms, it is necessary to preprocess the system quickly. In this paper, blurred image correction method that utilizes histogram equalization and bilateral filter using deviation for driver assist system's image processing is proposed. It forms 5-stage processes namely scaler, equalization, modified noise filter, blur decision and edge detector. Using the extracted proper, values in bilateral filter for driving environment occurred driver assist system, the proposed algorithm is much faster processing time compare to the previous methods in blurred within 10 pixel. Results of experiment which are run time and experimental PSNR results using MATLAB is obtained and verified that our proposed algorithm is more faster performance compare with the existing methods.
Journal of the Institute of Convergence Signal Processing
/
v.3
no.4
/
pp.29-34
/
2002
In this paper, we present a new geometric active contour model based on level set methods introduced by Osher and Sethian for detection of object boundaries or shape and we adopt anisotropic diffusion filtering method for removing noise from original image. In order to minimize the processing time, we use the narrow band method which allows us to perform calculations in the neighborhood of the contour and not in the whole image. Using anisotropic diffusion filtering for each slice, we have the result with reduced noise and extracted exact shape. Volume rendering operates on three-dimensional data, processes it, and transforms it into a simple two-dimensional image.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.396-396
/
2018
우리나라의 가뭄은 통계적으로 5~6년 주기로 발생해 왔으나 최근에는 가뭄의 발생 빈도가 점점 증가하고 주기 또한 짧아지는 경향을 보이고 있다. 가뭄의 패턴 또한 지속적이고 국지적으로 강하게 나타내는 경향이 있어 피해가 심각해지고 있다. 2017년도에는 모내기가 시작되어야 할 시기에 극심한 물 부족으로 이앙시기가 지연되고 밭작물이 마르는 피해를 겪었다. 국가가뭄정보센터의 2017년 가뭄예경보 자료에 따르면, 1~7월에는 안성, 서산, 홍성 지역을 중심으로, 7~9월에는 남해안지역을 중심으로, 10월~12월에는 울주, 경주, 밀양 지역을 중심으로 가뭄이 나타났음을 확인 할 수 있다. 가뭄 파악을 위한 방법 중 하나로 인공위성영상을 활용한 원격탐사 기법이 있으며, 국내에서는 관측주기가 짧고 관측폭이 넓은 Terra MODIS 영상을 활용하는 연구 사례를 다수 찾아볼 수 있다. 최근에는 드론에 NIR, 열화상, 초분광 카메라 등을 탑재하여 탐지범위가 국소적이지만 가뭄에 따른 작물의 상태를 보다 상세하게 파악하기 위한 연구가 시도되고 있다. 본 연구에서는 드론을 이용한 가뭄지역의 영상특성을 분석하는 기초자료를 구축하기 위하여 2017년 극심한 가뭄이 발생하였던 안성지역을 대상으로 Terra MODIS NDVI를 이용한 식생상태지수(VCI), 정규식생지수(SVI)를 분석하여 가뭄으로 추정되는 드론촬영 대상지역을 파악하였으며, 선정된 지역을 대상으로 R-G-NIR 카메라를 탑재한 드론 촬영을 실시하였다. 드론영상의 전처리를 통하여 고해상도 NDVI영상을 작성하고 지상의 작물 및 토지이용 상태에 따른 NDVI 분포특성과 Terra MODIS NDVI와의 차이점을 분석하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.100-103
/
2014
Currently, edge detection is utilized in various areas. Edge detection is the preprocessing process for image processing in general, and this is a technology that is considered essential for image processing. According, research on this subject is carried out incessantly. Edge has important image related elements such as size, direction and location of the object of an image. Numerous methods were proposed for the detection. Among them, the representative methods are Sobel, Prewitt, Roberts, Laplacian. However, these existing methods are rather lacking when it comes to the edge detection characteristics in case of the image with mixed noise. Therefore, this study presented edge detection method that utilizes median and average values for the elements depending on the size and location of local mask.
Deep learning has recently become one of the most actively researched technologies in the field of medical imaging. The availability of sufficient data and the latest advances in algorithms are important factors that influence the development of deep learning models. However, several other factors should be considered in developing an optimal generalized deep learning model. All the steps, including data collection, labeling, and pre-processing and model training, validation, and complexity can affect the performance of deep learning models. Therefore, appropriate optimization methods should be considered for each step during the development of a deep learning model. In this review, we discuss the important factors to be considered for the optimal development of deep learning models.
동영상에서의 움직임 추적은 이전 프레임에서 얻어낸 정보를 이용할 수 있다는 점에서 프레임간의 연결 관계에 기반한 움직임 추적이 가능하다. 그러나 사람의 신체는 고정된 형태를 가지고 있지 않기 때문에 프레임 간의 단순한 연결 관계만으로 사람의 자세를 추정하고 움직임을 추적하는 것은 매우 어려운 문제이다. 본 논문에서는 구성요소에 기반한 인체 모델을 이용하여 이전 프레임에서 찾은 블랍들을 연속된 프레임에서 찾은 블랍들로 연결함으로써, 동영상에서 사람의 자세를 추적하는 방법을 제안한다. 주어진 모델에 따라 이전 블랍은 대응되거나, 여러 블랍으로 나뉘거나, 다른 블랍들과 결합되어 사라지거나, 새로 생성되는 등의 4 가지 경우로 나뉘어 질 수 있는데, 각 경우에 대한 처리 방안을 제안하였다. 제안된 방법은 인체들과 블랍들의 리스트 처리를 간단하게 할 뿐만 아니라, 추적의 전처리 과정으로 블랍화를 옳게 수행해야 하는 부담을 덜어주어 과도한 블랍화와 부족한 블랍화 등의 문제를 해결할 수 있다.
본 논문에서는 원거리에서 촬영한 영상을 가지고 얼굴 인식의 전처리 과정인 얼굴 영역 검출에 관한 알고리즘을 제안하였다. 원거리에서 촬영된 영상은 얼굴에 대한 특징 정보가 부족하여 검출 및 판별이 어려웠으나 본 논문에서 제안한 알고리즘을 적용하면 적은 정보만을 가지고 얼굴 검출 및 판별이 가능하다. 제안된 알고리즘은 피부색에 대한 색상 정보와 명암 정보를 이용하여 얼굴 영역을 추출하였고, 추출된 얼굴 영역으로부터 눈, 코, 입뿐만 아니라 이마 영역도 검출함으로써 얼굴 검출 효율을 개선하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.