본 논문에서는 블랙박스 혹은 운전석에 장착된 카메라로부터 얻어진 차량 영상에 대한 영역별 수직 히스토그램 매칭 및 선형 회귀분석 모델(linear regression model)을 활용한 강건한 차량 운행 동영상의 안정화(video stabilization) 기법을 제안한다. 동영상 안정화 기법은 영상의 흔들림 보정뿐 아니라 동영상 내 강건한 특징점 추적 및 매칭을 위한 이전의 전처리 과정으로 적용된다. 일반적으로 촬영 과정에서 많은 떨림이 포함될 수 있는 야외 CCTV 영상이나 손으로 들고(hand-held) 촬영된 동영상에 대한 흔들림 보정 등에 적용되고 있으나 영상 내 특징점이 지속적으로 변하고 영상의 변화 정도가 매우 심한 차량 운행 동영상에서는 적용된 사례가 드물다. 본 연구에서는 일반적인 비디오 안정화 기술이 적용되기 어려운 차량 운행 동영상에 대하여 수직 투영 히스토그램 매칭 및 선형 회귀분석 모델 기반의 안정화 기법을 제안한다. 제안된 기법은 입력영상에 대한 영역별 수직 투영 히스토그램 매칭을 수행하고 선형 회귀모델을 통해 영상에 나타나는 수직 및 회전이동 변환을 선형 근사하여 시간 영역 상의 입력 영상에 대한 안정화를 달성한다. 제안 방법의 검증을 위해 블랙박스로 촬영된 실제 동영상에 동영상 안정화 기술을 적용하였으며, 운행 중 불규칙한 노면으로 인한 영상의 흔들림이 효과적으로 제거되는 것을 확인할 수 있었다.
동영상 안정화 기술은 최근 1인 미디어 시장이 거대화됨에 따라 그 중요성이 점점 커지고 있는 카메라 기술 중 하나이다. 딥러닝 기반의 기존 방법들에서는 안정화 전/후 동영상 데이터 쌍을 사용하였으나 동영상의 특성상 동기화된 안정화 전/후 데이터를 만드는 것은 많은 시간과 노력이 필요하다. 최근 이러한 문제를 완화하기 위하여 안정화 전 데이터만을 사용하는 비지도 학습 방법이 제시되고 있다. 본 논문에서는 비지도 학습 방법의 하나인 Convolutional Autoencoder 구조를 사용하여 안정화 전/후 동영상 데이터 쌍 없이 안정화 전 영상만으로 안정화 궤적을 학습하는 네트워크 구조를 제안한다. 네트워크 입력 및 출력으로 옵티컬 플로우를 사용하고 네트워크 경량화 및 노이즈 최소화를 위해 옵티컬 플로우를 Grid 단위로 맵핑하여 사용했다. 또한 비지도 학습 방법으로 안정화된 궤적을 생성하기 위해 옵티컬 플로우를 부드럽게 만드는 손실함수를 정의하였고 결과 비교를 통해 손실함수의 의도대로 부드러운 궤적을 생성하도록 네트워크가 학습되었음을 확인했다.
위성 카메라를 위한 초점면부 영상 안정화 장치는 영상이 맺히는 초점면부의 운동외란을 제거함으로써 위성 카메라의 영상 품질을 향상 시킬 수 있는 효율적인 방법 중 하나이다. 본 연구의 목적은 초점면부 안정화 기법을 소개하고 초점면부 영상 안정화 장치 액츄에이터의 응답 및 추력에 대한 최적의 구동 조건을 결정하는 것이다. 이를 위해 다양한 구동 조건에 따른 영상화 안정화 장치의 마찰 구동형 압전 액츄에이터의 응답성과 추력을 실험적으로 조사하였다. 실험결과로부터 마그네슘 슬라이더에 대한 최적의 구동 주파수는 70 kHz, 듀티비는 27% 였다.
본 논문에서는 가상현실 및 모션 시뮬레이터를 이용하여 무인차량용 영상 안정화 장치의 실내 시험환경을 구축하였다. 실제 주행 환경은 군용 탱크 시험을 위한 애버딘 시험장 범프 주행로의 가상 환경으로 대체하였다. 또한 무인 차량 모션은 모션 시뮬레이터를 이용하여 구현하였다. 가상 주행 환경은 모션 시뮬레이터 위에 설치된 영상안정화 장치의 앞에 구현하였다. 영상 안정화 장치의 카메라의 영상 및 카메라에 부착된 IMU 센서 데이터를 통해 안정화 성능을 확인하였다.
본 논문에서는 블랙박스 혹은 운전석에 장착된 카메라로부터 얻어진 차량 영상에 대한 영역별 수직 투영 히스토그램 매칭 및 선형 회귀분석 모델을 활용한 강건한 차량 운행 동영상의 안정화 기법을 제안한다. 동영상 안정화 기법은 영상의 흔들림 보정 뿐 아니라 동영상 내 강건한 특징점 추적 및 매칭을 위한 이전의 전처리 과정으로 활용된다. 일반적으로 촬영 과정에서 많은 떨림이 포함될 수 있는 야외 CCTV 영상이나 손으로 들고 촬영된 동영상에 대한 흔들림 보정 등에 적용되고 있으나 영상 내 특징점이 지속적으로 변하고 영상의 변화 정도가 매우 심한 차량 운행 동영상에서는 적용된 사례가 드물다. 본 연구에서는 일반적인 비디오 안정화 기술이 적용되기 어려운 차량 운행 동영상에 대하여 흔들림 보정을 위한 동영상 안정화 기법을 제안한다. 제안된 기법은 입력 영상에 대한 영역별 수직 투영 히스토그램 매칭을 수행하고 선형 회귀모델을 통해 영상에 나타나는 수직 및 회전 이동 변환을 선형 근사하여 시간 영역상에서의 입력 영상에 대한 안정화를 수행한다. 제안 방법의 검증을 위해 블랙박스로 촬영된 동영상에 동영상 안정화 기술을 적용하였으며, 운행 중 불규칙한 노면으로 인한 영상의 흔들림이 효과적으로 제거되는 것을 확인할 수 있었다.
영상 안정화(image stabilization)는 흔들림이 있는 영상을 영상처리 기법으로 안정화 시키는 과정을 말한다. PA(projection algorithm)기법을 이용한 디지털 영상 안정화는 쉽게 글로벌 모션을 얻을 수 있어 많이 연구가 되어 왔다. PA기법은 실현이 간단하고 속도가 빠른 장점이 있지만 고정된 탐색범위를 사용함으로 탐색범위를 초과한 떨림을 안정화 시킬 수 없고 또한 큰 떨림을 안정화 하기위하여 탐색범위를 크게 하면 모션 추적에 참여하는 블록이 작아져 적확한 글로벌 모션을 얻지 못하게 된다. 본 논문에서는 기존의 PA기법의 단점을 해결하기 위하여 여러 가지 흔들림의 크기에 절용할 수 있는 IPA(Iterative Projection Algorithm)기법을 제안하여, 차량에서 찍은 연속된 영상 1000프레임에 적용하였을 때 기존의 알고리즘을 사용하고 서로 다른 탐색범위를 사용한 결과보다 PSNR이 최저 6.8%, 최고 28.9% 향상 되었다.
본 논문에서는 딥러닝을 활용한 흔들림 영상 안정화 알고리즘을 제안하였다. 제안하는 알고리즘은 기존 몇 가지 2D, 2.5D 및 3D 기반 안정화 기술과 다르게 딥러닝을 활용한다. 제안하는 알고리즘은 흔들리는 영상을 CNN 네트워크 구조와 LSTM 네트워크 구조를 통한 특징 추출 및 비교하여 이전 프레임과 현재 프레임 간의 특징점 위치 차이를 통해 특징점의 이동 크기와 방향의 반대로 영상을 변환하는 알고리즘이다. 흔들림 안정화를 위한 알고리즘은 각 프레임의 특징 추출 및 비교를 위해 Tensorflow를 활용하여 CNN 네트워크과 LSTM 구조를 구현하였으며, 영상 흔들림 안정화는 OpenCV open source를 활용해 구현하였다. 실험결과 영상의 흔들림이 상하좌우로 흔들리는 영상과, 급격한 카메라 이동이 없는 영상을 실험에 사용하여, 제안한 알고리즘을 적용한 결과 사용한 상하좌우 흔들림 영상에서는 안정적인 흔들림 안정화 성능을 기대할 수 있었다.
본 논문에서는 움직임 분리와 안정화 모드를 이용하여 근접감시용 무인항공기의 영상을 안정화 시키는 알고리즘을 제안하였다. 무인 항공기에서 촬영된 영상에는 임무에 의한 움직임과 기체의 진동에 의한 움직임이 혼합되어 나타난다. 영상을 안정화하기 위해서는 진동에 의한 움직임을 제거하여야 한다. 제안된 알고리즘에서는 연속된 두 영상의 전역움직임을 6계수 움직임 모형과 2계수 밝기변화 모형으로 모델링하고 Gauss-Newton 알고리즘에 기반한 비선형 최소 제곱법(non-linear least squares)을 이용하여 움직임을 추정하였다. 추정된 움직임에서 IIR 필터를 이용하여 진동에 의한 움직임을 분리하여 제거함으로서 영상을 안정화 하였다. 또한 안정화 영상 생성시 시점의 변화가 많은 실제 무인항공영상에 적용하기 위하여 초기화 상태와 안정화 상태의 두 가지의 상태를 가지는 안정화 모드를 제안하였다. 실험결과 99%의 정확도로 전역 움직임을 추정하였고, 90%의 진동에 의한 움직임 제거 성능을 보였다. 또한, 제안한 알고리즘을 실제 항공영상에 적용하여 영상이 안정화 되는 것을 확인하였다.
깊이 영상에 대한 접근성이 용이해지면서 다양한 연구 분야에서 깊이 센서를 활용하고 있다. 컴퓨터 비전의 모션인식 분야에서도 깊이 영상을 이용한 연구들이 진행되고 있다. 모션을 정확히 인식하기 위해서는 안정적인 데이터를 활용할 수 있어야 하지만 깊이 센서는 노이즈를 포함한다. 이러한 노이즈는 모션 인식 시스템의 성능에 영향을 줄 수 있기 때문에 효과적으로 노이즈를 억제하는 방법이 필요하다. 본 논문에서는 하드웨어를 사용하여 깊이 센서에서 입력되는 깊이 영상에 시간 영역과 공간 영역에서 안정화를 수행함으로써 깊이 영상을 안정화하는 하드웨어를 제안한다. 바닥 제거 알고리즘에 깊이 영상 안정화를 적용하여 노이즈를 억제한 깊이 영상 안정화가 시스템의 신뢰도 향상에 기여할 수 있음을 확인하고 구현한 하드웨어를 FPGA와 APU를 이용해 실시간 동작을 확인하였으며 설계한 하드웨어는 최대 202.184MHz에서 동작할 수 있다.
최근에 개인용 카메라를 통해 개인의 추억을 파노라마 영상으로 기록하는 것에 관심이 급증하고 있다. 파노라마 영상에 관심이 급증함에 따라 파노라마 영상을 제작하는 방법에 대해 여러 분야에서 연구가 많이 진행되고 있다. 일반적으로 개인용 카메라를 손으로 잡고 촬영하는 경우가 대부분이다. 손으로 잡고 촬영한 영상은 손 떨림에 의해 흔들린 영상이 된다. 이는 파노라마 영상을 만들 때 어려운 요소를 야기한다. 그러므로 흔들린 영상을 정합하고 안정화하는 연구는 매우 중요하다. 따라서 본 연구의 목적은 최근에 연구된 비디오 정합(Video Stitching)과 비디오 안정화(Video Stabilization)의 정확도 및 경향을 파악을 통해 빛의 변화가 빈번하고 움직임이 많은 콘서트 영상 정합에 이용될 아이디어 추출에 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.