• Title/Summary/Keyword: 영상투과심도

Search Result 4, Processing Time 0.022 seconds

Manufacture and Image Characteristic Changes Observation by Temperature of Ultrasound Tissue Mimicking Phantom (초음파 Tissue Mimicking 팬텀의 제작과 온도 변화에 따른 영상 특성 변화 관찰)

  • Ma, Sang-Chull
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.157-161
    • /
    • 2016
  • The purpose of this study is that in measures the acoustic propagate characteristics and temperature sensitivity of ultrasound tissue mimicking phantom(TM phantom). TM phantom manufacture according to the International Electronical Committee(IEC) guidelines for acoustic propagate characteristics of soft tissue. TM phantom was observed to have the image brightness and the image depth penetration decreases changes convergence which was the subject of ultrasound image characteristics in accordance with an external temperature that the change is reduced in temperature below $22^{\circ}C$. This study provide a basis t o create another TM Phantom and TM Phantom has been determined that it is appropriate for use in more than $22^{\circ}C$.

The Study on Ultrasound Physical Characteristic and Synthesis of Tissue Mimicking Materials Used New Materials (신소재를 사용한 인체조직모사물질의 합성과 초음파 물리적 특성에 관한 연구)

  • Ma, Sang-Chull;Kim, Hwa-Sun;Ann, Young-Man
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • This study analyzed speed of sound, impedance, attenuation coefficient in accordance with acoustic characteristic standard of body soft tissue corresponding with Annex DD of IEC standard 60601-2-37(2007) which is about tissue mimicking materials (TMM) synthesized by polyurethane as a main material and new type of n-type scatter materials. This study reached the following conclusion after analyzing and evaluating image characteristic with SONOACE 9900 c PRIME (MEDESON Co.) and brightness, maximum penetration with convex probe (2.5~5.0 MHz). When n-type scatter materials are increasingly synthesised 0~8% with prepolymer as a main material and polyol mixture as a catalyst, 1. The more scatter materials are increased, the more sound speed of TMM becomes closely similar to soft tissue. 2. The more scatter materials are decreased, the more acoustic impedance becomes closely similar to soft tissue. 3. The more scatter materials are increased, the more attenuation coefficient is increased. 4. The more scatter materials are increased, the more average brightness of images is increased, but there is threshold. 5. The maximum penetration becomes closely similar to soft tissue at the 6% TMM as a scatter material.

Imaging Inner Structure of Bukbawi at Mt. Palgong Provincial Park Using Ground Penetrating Radar (지하투과레이더를 활용한 팔공산 도립공원 북바위 내부구조 연구)

  • Kim, Hyeong-Gi;Baek, Seung-Ho;Kim, Seung-Sep;Lee, Na Young;Kwon, Jang-Soon
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.487-495
    • /
    • 2017
  • A granite rock body, called 'Bukbawi', located on a mountaineering trail at Mt. Palgong Provincial Park is popular among the public because it resembles a percussion instrument. If someone hits the specific surface area of this rock body, people can hear drum-like sound. Such phenomenon may be geologically associated with exfoliation process of the granite body or miarolitic cavity developed after gasses escaped during formation of granite. To understand better the inner structure causing drum-like sound, we carried out a non-destructive ground-penetrating radar survey. In this study, as our primary target is very close to the surface, we utilized 1 GHz antennas to produce high-resolution near-surface images. In order to construct 3-D internal images, the measurements were conducted along a pre-defined grid. The processed radargrams revealed that the locations associated with 'drum' sound coincide with strong reflections. In addition, both reflection patterns of fracture and cavity were observed. To further quantify the observed reflections, we simulated GPR scans from a synthetic fracture in a granite body, filled with different materials. The simulated results suggest that both exfoliation process and miarolitic cavity may have contributed to the 'drum' phenomena. Furthermore, the radargrams showed a well-developed cavity signature where two major reflection planes were crossed. Thus, our study is an example of non-destructive geophysical studies that can promote Earth Science in the broader community by examining geological structures attracting the public.

A geophysical survey result over a hydrocarbon contaminated site (물리탐사를 이용한 국내 유류오염지역 조사 사례)

  • Song Yoonho;Park Sam Gyu;Seol Soon Jn;Choi Seong-Jun;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.122-140
    • /
    • 2001
  • We have applied the geophysical survey, mainly electric and electromagnetic (EM) methods, to a test site contaminated by hydrocarbon waste disposal and local spill. The multi-frequency, moving source & receiver EM survey along with ground penetrating radar (GPR) showed a fairly good performance in detection of buried metal pipes and objects. Magnetic survey measuring vertical and horizontal gradients were so sensitive to the small metallic objects spread over the surface that it's hard to discriminate the buried pipe. We chose electrical resistivity, EM and GPR survey to examine the soil contamination. Depth slices of resistivity distribution as the results of the inversion of resistivity and EM data coincided each other and closely matched the contaminated area determined by chemical analysis of the soil samples. GPR images did not show the reflection events related with contamination plume since there are no distinct spill in this site. We inferred the contamination using the penetration depth of the GPR energy, which could be used as auxiliary information to the resistivity and EM results. We summarized the applicability of each survey methods based on this results and proposed a desirable survey scheme for the determination of hydrocarbon contaminated site.

  • PDF