• Title/Summary/Keyword: 영상정보시스템

Search Result 6,143, Processing Time 0.041 seconds

A study on vision system based on Generalized Hough Transform 2-D object recognition (Generalized Hough Transform을 이용한 이차원 물체인식 비젼 시스템 구현에 대한 연구)

  • Koo, Bon-Cheol;Park, Jin-Soo;Chien Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.67-78
    • /
    • 1996
  • The purpose of this paper is object recognition even in the presence of occlusion by using generalized Hough transform(GHT). The GHT can be considered as a kind of model based object recognition algorithm and is executed in the following two stages. The first stage is to store the information of the model in the form of R-table (Reference table). The next stage is to identify the existence of the objects in the image by using the R-table. The improved GHT method is proposed for the practical vision system. First, in constructing the R-table, we extracted the partial arc from the portion of the whole object boundary, and this partial arc can be used for constructing the R-table. Also, clustering algorithm is employed for compensating an error arised by digitizing an object image. Second, an efficient method is introduced to avoid Ballard's use of 4-D array which is necessary for estimating position, orientation and scale change of an object. Only 2-D array is enough for recognizing an object. Especially, scale token method is introduced for calculating the scale change which is easily affected by camera zoom. The results of our test show that the improved hierarchical GHT method operates stably in the realistic vision situation, even in the case of object occlusion.

  • PDF

A Study on Data Acquisition in the Invisible Zone of UAV through LTE Remote Control (LTE 원격관제를 통한 UAV의 비가시권 데이터 취득방안)

  • Jeong, HoHyun;Lee, Jaehee;Park, Seongjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.987-997
    • /
    • 2019
  • Recently the demand for drones is rapidly increasing, as developing Unmanned Aerial Vehicle (UAV) and growing interest in them. Compared to traditional satellite and aerial imagery, it can be used for various researches (environment, geographic information, ocean observation, and remote sensing) because it can be managed with low operating costs and effective data acquisition. However, there is a disadvantage in that only a small area is acquired compared to the satellite and an aircraft, which is a traditional remote sensing method, depending on the battery capacity of the UAV, and the distance limit between Ground Control System (GCS) and UAV. If remote control at long range is possible, the possibility of using UAV in the field of remote sensing can be increased. Therefore, there is a need for a communication network system capable of controlling regardless of the distance between the UAV and the GCS. The distance between UAV and GCS can be transmitted and received using simple radio devices (RF 2.4 GHz, 915 MHz, 433 MHz), which is limited to around 2 km. If the UAV can be managed simultaneously by improving the operating environment of the UAV using a Long-Term Evolution (LTE) communication network, it can make greater effects by converging with the existing industries. In this study, we performed the maximum straight-line distance 6.1 km, the test area 2.2 ㎢, and the total flight distance 41.75 km based on GCS through LTE communication. In addition, we analyzed the possibility of disconnected communication through the base station of LTE communication.

Improved Vapor Recognition in Electronic Nose (E-Nose) System by Using the Time-Profile of Sensor Array Response (센서 응답의 Time-Profile 을 이용한 전자 후각 (E-Nose) 시스템의 Vapor 인식 성능 향상)

  • Yoon Seok, Yang
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.329-334
    • /
    • 2004
  • The electronic nose (E-nose) recently finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. The odor recognition performance of E-nose can be improved by manipulating the sensor array responses of vapors in time-profile forms. The different chemical interactions between the sensor materials and the volatile organic compounds (VOC's) leave unique marks in the signal profiles giving more information than collection of the conventional piecemal features, i.e., maximum sensitivity, signal slopes, rising time. In this study, to use them in vapor recognition task conveniently, a novel time-profile method was proposed, which is adopted from digital image pattern matching. The degrees of matching between 8 different vapors were evaluated by using the proposed method. The test vapors are measured by the silicon-based gas sensor array with 16 CB-polymer composites installed in membrane structure. The results by the proposed method showed clear discrimination of vapor species than by the conventional method.

Abnormal Behavior Detection Based on Adaptive Background Generation for Intelligent Video Analysis (지능형 비디오 분석을 위한 적응적 배경 생성 기반의 이상행위 검출)

  • Lee, Seoung-Won;Kim, Tae-Kyung;Yoo, Jang-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2011
  • Intelligent video analysis systems require techniques which can predict accidents and provide alarms to the monitoring personnel. In this paper, we present an abnormal behavior analysis technique based on adaptive background generation. More specifically, abnormal behaviors include fence climbing, abandoned objects, fainting persons, and loitering persons. The proposed video analysis system consists of (i) background generation and (ii) abnormal behavior analysis modules. For robust background generation, the proposed system updates static regions by detecting motion changes at each frame. In addition, noise and shadow removal steps are also were added to improve the accuracy of the object detection. The abnormal behavior analysis module extracts object information, such as centroid, silhouette, size, and trajectory. As the result of the behavior analysis function objects' behavior is configured and analyzed based on the a priori specified scenarios, such as fence climbing, abandoning objects, fainting, and loitering. In the experimental results, the proposed system was able to detect the moving object and analyze the abnormal behavior in complex environments.

Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data (Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발)

  • Kim, Minhwa;Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) remote sensing data is a very useful tool for near-real-time identification of landslide affected areas that can occur over a large area due to heavy rains or typhoons. This study aims to develop an effective algorithm for automatically delineating landslide areas from the polarimetric SAR data acquired after the landslide event. To detect landslides from SAR observations, reduction of the speckle effects in the estimation of polarimetric SAR parameters and the orthorectification of geometric distortions on sloping terrain are essential processing steps. Based on the experimental analysis, it was found that the IDAN filter can provide a better estimation of the polarimetric parameters. In addition, it was appropriate to apply orthorectification process after estimating polarimetric parameters in the slant range domain. Furthermore, it was found that the polarimetric entropy is the most appropriate parameters among various polarimetric parameters. Based on those analyses, we proposed an automatic landslide detection algorithm using the histogram thresholding of the polarimetric parameters with the aid of terrain slope information. The landslide detection algorithm was applied to the ALOS-2 PALSAR-2 data which observed landslide areas in Japan triggered by Typhoon in September 2011. Experimental results showed that the landslide areas were successfully identified by using the proposed algorithm with a detection rate of about 82% and a false alarm rate of about 3%.

Real-Time Joint Animation Production and Expression System using Deep Learning Model and Kinect Camera (딥러닝 모델과 Kinect 카메라를 이용한 실시간 관절 애니메이션 제작 및 표출 시스템 구축에 관한 연구)

  • Kim, Sang-Joon;Lee, Yu-Jin;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.269-282
    • /
    • 2021
  • As the distribution of 3D content such as augmented reality and virtual reality increases, the importance of real-time computer animation technology is increasing. However, the computer animation process consists mostly of manual or marker-attaching motion capture, which requires a very long time for experienced professionals to obtain realistic images. To solve these problems, animation production systems and algorithms based on deep learning model and sensors have recently emerged. Thus, in this paper, we study four methods of implementing natural human movement in deep learning model and kinect camera-based animation production systems. Each method is chosen considering its environmental characteristics and accuracy. The first method uses a Kinect camera. The second method uses a Kinect camera and a calibration algorithm. The third method uses deep learning model. The fourth method uses deep learning model and kinect. Experiments with the proposed method showed that the fourth method of deep learning model and using the Kinect simultaneously showed the best results compared to other methods.

Dementia Patient Wandering Behavior and Anomaly Detection Technique through Biometric Authentication and Location-based in a Private Blockchain Environment (프라이빗 블록체인 환경에서 생체인증과 위치기반을 통한 치매환자 배회행동 및 이상징후 탐지 기법)

  • Han, Young-Ae;Kang, Hyeok;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.119-125
    • /
    • 2022
  • With the recent increase in dementia patients due to aging, measures to prevent their wandering behavior and disappearance are urgently needed. To solve this problem, various authentication methods and location detection techniques have been introduced, but the security problem of personal authentication and a system that can check indoor and outdoor overall was lacking. In order to solve this problem, various authentication methods and location detection techniques have been introduced, but it was difficult to find a system that can check the security problem of personal authentication and indoor/outdoor overall. In this study, we intend to propose a system that can identify personal authentication, basic health status, and overall location indoors and outdoors by using wristband-type wearable devices in a private blockchain environment. In this system, personal authentication uses ECG, which is difficult to forge and highly personally identifiable, Bluetooth beacon that is easy to use with low power, non-contact and automatic transmission and reception indoors, and DGPS that corrects the pseudorange error of GPS satellites outdoors. It is intended to detect wandering behavior and abnormal signs by locating the patient. Through this, it is intended to contribute to the prompt response and prevention of disappearance in case of wandering behavior and abnormal symptoms of dementia patients living at home or in nursing homes.

Field Phenotyping of Plant Height in Kenaf (Hibiscus cannabinus L.) using UAV Imagery (드론 영상을 이용한 케나프(Hibiscus cannabinus L.) 작물 높이의 노지 표현형 분석)

  • Gyujin Jang;Jaeyoung Kim;Dongwook Kim;Yong Suk Chung;Hak-Jin Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.274-284
    • /
    • 2022
  • To use kenaf (Hibiscus cannabinus L.) as a fiber and livestock feed, a high-yielding variety needs to be identified. For this, accurate phenotyping of plant height is required for this breeding purpose due to the strong relationship between plant height and yield. Plant height can be estimated using RGB images from unmanned aerial vehicles (UAV-RGB) and photogrammetry based on Structure from Motion (SfM) algorithms. In kenaf, accurate measurement of height is limited because kenaf stems have high flexibility and its height is easily affected by wind, growing up to 3 ~ 4 m. Therefore, we aimed to identify a method suitable for the accurate estimation of plant height of kenaf and investigate the feasibility of using the UAV-RGB-derived plant height map. Height estimation derived from UAV-RGB was improved using multi-point calibration against the five different wooden structures with known heights (30, 60, 90, 120, and 150 cm). Using the proposed method, we analyzed the variation in temporal height of 23 kenaf cultivars. Our results demontrated that the actual and estimated heights were reliably comparable with the coefficient of determination (R2) of 0.80 and a slope of 0.94. This method enabled the effective identification of cultivars with significantly different heights at each growth stages.

A Study on Estimating the Crossing Speed of Mobility Handicapped for the Activation of the Smart Crossing System (스마트횡단시스템 활성화를 위한 교통약자의 횡단속도 추정)

  • Hyung Kyu Kim;Sang Cheal Byun;Yeo Hwan Yoon;Jae Seok Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.87-96
    • /
    • 2022
  • The traffic vulnerable, including elderly pedestrians, have a relatively low walking speed and slow cognitive response time due to reduced physical ability. Although a smart crossing system has been developed and operated to improve problem, it is difficult to operate a signal that reflects the appropriate walking speed for each pedestrian. In this study, a neural network model and a multiple regression model-based traversing speed estimation model were developed using image information collected in an area with a high percentage of traffic vulnerability. to support the provision of optimal walking signals according to real-time traffic weakness. actual traffic data collected from the urban traffic network of Paju-si, Gyeonggi-do were used. The performance of the model was evaluated through seven selected indicators, including correlation coefficient and mean absolute error. The multiple linear regression model had a correlation coefficient of 0.652 and 0.182; the neural network model had a correlation coefficient of 0.823 and 0.105. The neural network model showed higher predictive power.

The Shape Preferred Orientation (SPO) Analysis in Estimation of Fault Activity Study (단층 활동 추적 연구에서의 Shape Preferred Orientation (SPO) 분석법)

  • Ho Sim;Yungoo Song;Changyun Park;Jaewon Seo
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.293-300
    • /
    • 2023
  • The Shape Preferred Orientation (SPO) method has been used to analyze the orientation of fault motion, which is utilized as basic data for fault kinematics studies. The rigid grains, which as quartz, feldspar, and rock fragments, in the fault gouge are arranged in the P-shear direction through rigid body rotation by a given shear stress. Using this characteristic, the fault motion can be estimated from the SPO inversely. Recently, a method for securing precision and reliability by measuring 3D-SPO using X-ray CT images and examining the shape of a large number of particles in a short time has been developed. As a result, the SPO method analyzes the orientation of thousands to tens of thousands of particles at high speed, suggests the direction of fault motion, and provides easy accessibility and reliable data. In addition, the shape information and orientation distribution data of particles, which are by-products obtained in the SPO analysis process, are expected to be used as basic data for conducting various studies such as the local deformation of fault rocks and the fault generation mechanism.