최근 노이즈 제거를 위한 심층 학습 모델에 대한 연구가 활발하게 진행되고 있다. 특히 블라인드 노이즈 제거 (blind denoising) 기술이 발전하면서 깨끗한 영상을 얻기가 불가능한 영상의 영역에서 노이즈 영상만으로 심층 학습 기반 노이즈 제거 모델의 학습이 가능해졌다. 우리는 관찰된 노이즈 영상으로부터 깨끗한 영상을 얻기 위해 더는 깨끗한 영상과 노이즈 영상의 짝을 이루는 데이터를 필요하지 않는다. 하지만 노이즈 영상과 깨끗한 영상 간의 차이가 큰 데이터라면 노이즈 영상만으로 학습된 노이즈 제거 모델은 우리가 원하는 품질의 깨끗한 영상을 복원하기 어려울 것이다. 이 문제를 해결하기 위해서 짝지어지지 않는 깨끗한 영상과 노이즈 영상으로 학습한 모델 기반 노이즈 제거 기술은 최근 연구되고 있다. 가장 최신 기술인 ISCL은 깨끗한 영상과 노이즈 영상의 쌍을 기반으로 한 지도학습 기반 모델의 성능과 거의 근접한 성능을 보여 주었다. 우리는 제안된 방법이 ISCL을 포함한 다른 최신 짝을 이루지 않는 영상 기반 노이즈 제거 기술보다 성능이 우수함을 보여준다.
본 논문에서는 hybrid MC/DCT 기법을 이용한 압축 영상의 블록화 및 링 현상을 동시에 제거하는 기법이 제안된다. 압축 영상의 블록화 링 현상은 블록간, 블록 내에서 다른 특성이 있고, 수평. 수직 방향의 상관 관계에 따라 다를 수 있으며, 영상 사이의 일정 상관 관계에 따라 다르게 형성된다. 본 논문에서는 이러한 블록간, 블록 내부, 수평수직 방향성, 그리고 시간 영역의 정보를 이용하여 새로운 부가 완화 함수를 정의하며, 최적 해를 구하기 위해 gradient와 양자화 과정으로부터 설정할 수 있는 비선형 연산을 이용한 projection을 결합시킨 hybrid 형태의 기법이 제안된다. 또한, 정규화 계수들은 부호화단에서 이용 가능한 정보로부터 예측하여 기존 방식이 있던 계산량이 이득을 얻을 수 있다. 실험 결과로부터 제안된 방식의 주관적, 객관적 성능 향상을 확인할 수 있었다.
본 논문에서는 영상 처리 및 인식 기술을 학생증 영상 인식에 적용하여 학생증 영상을 인식하고 웹 환경에서 학생 정보를 관리할 수 있는 방법을 제안한다. 원 학생증 영상에 대해서 가장 밝은 픽셀과 가장 어두운 픽셀에 대한 평균 밝기 값을 임계치로 설정하여 원 영상을 이진화하여 수평 방향으로 히스토그램을 수행하고 학번의 위치 정보를 이용하여 학번 영 역을 추출한다. 추출된 학번 영 역의 잡음을 제거하기 위하여 3$\times$3 마스크를 적용한 최빈수 평활화(smothing)를 수행하여 잡음을 제거하고 수직 방향 히스토그램을 이용하여 개별 문자를 추출하고 정규화 한다. 개별 학번 인식은 인공 신경망의 자율학습 방법인 ARTI 알고리즘을 적용하여 학번 문자를 인식한다. 실험 결과에서는 제안된 학생증 인식 방법이 학번 영역 추출과 개별 문자 인식에 효율적인 것을 보이고 인식된 개련 문자들을 데이터 베이스에 저장하여 웹환경에서 학생정보를 관리한다
본 논문에서는 SVM(Support Vector Machine)과 LDA(Linear Discriminant Analysis)를 이용하여 사각형 형태 마커 검출 및 인식의 성능을 향상시키는 방법을 제안한다. 본 논문의 방법에서는 사각형 형태의 마커 검출을 위하여 입력 영상을 이진 영상으로 변환하고 객체들의 윤곽선을 추출한 다음에 윤곽선을 선분으로 근사화 한다. 근사화된 선분으로부터 기하학적 특징을 이용하여 사각형을 찾는다. 마커의 사각형 영역을 찾은 다음에는 워핑 기법과 확대/축소 변환을 이용하여 사각형 영상을 정사각형 형태로 정규화한다. 정사각형 형태로 정규화한 다음에는 주성분 분석을 적용하여 특징 벡터의 크기를 줄인 다음에 SVM을 이용하여 마커 영상인지 아닌지를 검사한다. 마커 영상으로 판별된 영상에 대하여 LDA를 적용하여 특징 벡터의 크기를 더 줄이고 표준 마커에 대한 특징 벡터와의 최소 거리법에 의해 마커의 종류를 인식한다. 인식 실험 결과 SVM을 사용함으로써 마커 검출의 오류를 줄일 수 있었고 LDA를 사용함으로써 특징 벡터의 크기는 줄어들고 인식률이 높아짐을 알 수 있었다.
본 논문에서는 거동이 불편한 환자를 위하여 주변 환경에 놓여 있는 기기들에 대한 제어와 간호사를 호출하는 간단한 의사소통 등을 위한 몇 가지 사각형 형태의 마커를 제시하고 이 마커들을 카메라 영상으로부터 검출하고 인식하는 방법을 제안한다. 본 논문에서는 사각형 형태의 마커 검출을 위하여 다중 임계값을 사용하여 입력 영상을 이진 영상으로 변환하고 객체들의 윤곽선을 추출한 다음에 윤곽선을 선분으로 근사화한다. 근사화 된 선분으로부터 기하학적 특징을 이용하여 사각형을 찾는다. 마커의 사각형 영역을 찾은 다음에는 워핑 기법을 이용하여 사각형 마커 영상을 정사각형 형태로 정규화한다. 마커 영상을 정규화한 다음에는 주성분 분석을 통하여 마커 영상으로부터 특징 벡터를 추출하고 마커의 종류를 인식한다. 본 논문의 시스템은 다중 임계값을 이용하여 조명에 견고하며 워핑 기법과 주성분 분석을 이용하여 촬영 각도에 견고하다. 총 21개의 마커를 설계하여 인식 실험한 결과 최대 100%의 인식률을 얻을 수 있었고 초당 12프레임의 수행속도로 조명과 각도 변화에 견고한 인식 결과를 얻을 수 있었다.
본 논문에서는 객체 검출에 사용되는 Haar-like feature의 정규화 방법에 대해 다룬다. 기존의 Haar-like feature의 분산 정규화는 후보 윈도우 픽셀들에 대한 표준편차 계산에 사용되는 별도의 적분 영상 생성을 위해 많은 연산을 필요로 했으며 밝기 변화가 작은 영역에서 오검출이 증가하는 문제를 가지고 있으나, 제안하는 정규화 방법은 별도의 적분 영상을 사용하지 않아 처리 속도가 빠르며 제안하는 방법을 사용하여 학습시킨 분류기는 밝기 변화에 대해 강건한 성능을 보인다. 실험 결과 제안한 방법을 사용했을 때 객체 검출기의 처리 속도는 26% 향상 되었으며, 제안한 방법을 사용하여 학습시킨 분류기들은 5% 이상 향상된 검출률을 보였으며, 밝기 변화가 심한 경우는 45% 향상된 검출률을 보였다.
본 논문에서는 영상의 비선형 평활화와 다차원의 명암변화에 기반을 둔 조합형 인식기법을 제안하였다. 여기서 비선형 평활화는 적응적 변형의 히스토그램 재조정 전처리 기법으로 영상의 밝기를 조정하여 화질을 개선하기 위함이다. 다차원의 명암변화는 인접 픽셀간의 밝기변화를 4단계로 나누어 고려함으로써 영상의 속성을 더욱 더 정확하게 반영하기 위함이고, x축과 y축의 2방향 각각의 명암변화를 고려한 정규상호상관계수는 좀 더 포괄적으로 영상의 유사성을 측정하기 위함이다. 제안된 기법을 50개 40*40 픽셀의 명암도 변화를 가지는 얼굴영상들을 대상으로 실험한 결과, 평활화를 수행하지 않거나 선형 평활화를 수행한 기법에 비해 각각 영상의 속성을 잘 반영한 우수한 인식성능이 있음을 확인하였다.
본 논문에서는 특정 지역을 연속해서 촬영하는 고정된 카메라 영상에서 사람들의 움직임을 검출하고 움직임을 분석하여 정량화 하는 방법을 제안한다. 먼저 배경 영상을 획득하기 위하여 일정 시간동안의 입력 영상을 누적하고 평균값으로 정규화 한다. 그리고 영상을 계속 누적하여 배경 영상을 실시간으로 갱신한다. 다음으로 획득된 배경 영상과 현재 영상에 대하여 차영상과 이진화를 수행하고 팽창 연산과 연결 성분 분석으로 잡영을 제거한다. 그리고 잡영이 제거된 영상에서 원근감 효과를 고려하는 가중치를 적용하여 움직임이 있는 객체를 클러스터링 하는 수정된 ART2 클러스터링 방법을 제안한다. 마지막으로 클러스터링 결과 정보를 이용하여 움직임을 정량화 한다. 제안하는 방법을 실내 환경에 설치된 네트워크 카메라로부터 영상을 획득하여 실험한 결과, 영상의 원근감 효과에 따라 군집 크기가 차이남에도 강인하게 분석할 수 있음을 확인하였다.
본 논문에서는 영상의 비선형 평활화와 특징들의 통계적 상관성에 기반을 둔 조합형 인식성능 개선기법을 제안하였다. 여기서 비선형 평활화는 로지스틱 함수에 기반을 둔 히스토그램 재조정의 전처리 기법으로 영상의 밝기를 조정하여 화질을 개선하기 위함이다. 통계적 상관성은 정규상호상관계수에 의해 측정되며, 이는 유사도를 좀 더 빠르고 정확하게 측정하기 위함이다. 또한 독립성분분석에 의한 국부적인 특징들을 대상으로 정규상호상관을 계산함으로써 좀 더 정확한 유사도를 통계적으로 측정하기 위함이다. 제안된 기법을 30개 40*50픽셀의 명암도 변화를 가지는 얼굴영상들을 대상으로 실험한 결과, 전처리를 하지 않은 기법이나 기존 및 적응적 변형히스토그램 평활화에 의한 전처리 기법에 비해 각각 영상의 속성을 잘 반영한 우수한 인식성능이 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.