• 제목/요약/키워드: 영상정규화

검색결과 519건 처리시간 0.026초

비지도 학습 기반 영상 노이즈 제거 기술을 위한 정규화 기법의 최적화 (Optimized Normalization for Unsupervised Learning-based Image Denoising)

  • 이강근;정원기
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권5호
    • /
    • pp.45-54
    • /
    • 2021
  • 최근 노이즈 제거를 위한 심층 학습 모델에 대한 연구가 활발하게 진행되고 있다. 특히 블라인드 노이즈 제거 (blind denoising) 기술이 발전하면서 깨끗한 영상을 얻기가 불가능한 영상의 영역에서 노이즈 영상만으로 심층 학습 기반 노이즈 제거 모델의 학습이 가능해졌다. 우리는 관찰된 노이즈 영상으로부터 깨끗한 영상을 얻기 위해 더는 깨끗한 영상과 노이즈 영상의 짝을 이루는 데이터를 필요하지 않는다. 하지만 노이즈 영상과 깨끗한 영상 간의 차이가 큰 데이터라면 노이즈 영상만으로 학습된 노이즈 제거 모델은 우리가 원하는 품질의 깨끗한 영상을 복원하기 어려울 것이다. 이 문제를 해결하기 위해서 짝지어지지 않는 깨끗한 영상과 노이즈 영상으로 학습한 모델 기반 노이즈 제거 기술은 최근 연구되고 있다. 가장 최신 기술인 ISCL은 깨끗한 영상과 노이즈 영상의 쌍을 기반으로 한 지도학습 기반 모델의 성능과 거의 근접한 성능을 보여 주었다. 우리는 제안된 방법이 ISCL을 포함한 다른 최신 짝을 이루지 않는 영상 기반 노이즈 제거 기술보다 성능이 우수함을 보여준다.

Gradient-Projection 기법을 이용한 압축 영상의 블록화 및 링 현상 제거 (Gradient-Projection Algorithm for Reducing Blocking Artifacts and Ringing Effects of Compressed Images)

  • 홍민철;최태은;연창모;박영만
    • 방송공학회논문지
    • /
    • 제3권2호
    • /
    • pp.172-179
    • /
    • 1998
  • 본 논문에서는 hybrid MC/DCT 기법을 이용한 압축 영상의 블록화 및 링 현상을 동시에 제거하는 기법이 제안된다. 압축 영상의 블록화 링 현상은 블록간, 블록 내에서 다른 특성이 있고, 수평. 수직 방향의 상관 관계에 따라 다를 수 있으며, 영상 사이의 일정 상관 관계에 따라 다르게 형성된다. 본 논문에서는 이러한 블록간, 블록 내부, 수평수직 방향성, 그리고 시간 영역의 정보를 이용하여 새로운 부가 완화 함수를 정의하며, 최적 해를 구하기 위해 gradient와 양자화 과정으로부터 설정할 수 있는 비선형 연산을 이용한 projection을 결합시킨 hybrid 형태의 기법이 제안된다. 또한, 정규화 계수들은 부호화단에서 이용 가능한 정보로부터 예측하여 기존 방식이 있던 계산량이 이득을 얻을 수 있다. 실험 결과로부터 제안된 방식의 주관적, 객관적 성능 향상을 확인할 수 있었다.

  • PDF

영상 인식을 이용한 웹 환경에서의 학사 관리 시스템 (An Educational Matters Administration System on The Web by Using Image Recognition)

  • 김태경;허정환;윤형근;노영욱;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.203-209
    • /
    • 2002
  • 본 논문에서는 영상 처리 및 인식 기술을 학생증 영상 인식에 적용하여 학생증 영상을 인식하고 웹 환경에서 학생 정보를 관리할 수 있는 방법을 제안한다. 원 학생증 영상에 대해서 가장 밝은 픽셀과 가장 어두운 픽셀에 대한 평균 밝기 값을 임계치로 설정하여 원 영상을 이진화하여 수평 방향으로 히스토그램을 수행하고 학번의 위치 정보를 이용하여 학번 영 역을 추출한다. 추출된 학번 영 역의 잡음을 제거하기 위하여 3$\times$3 마스크를 적용한 최빈수 평활화(smothing)를 수행하여 잡음을 제거하고 수직 방향 히스토그램을 이용하여 개별 문자를 추출하고 정규화 한다. 개별 학번 인식은 인공 신경망의 자율학습 방법인 ARTI 알고리즘을 적용하여 학번 문자를 인식한다. 실험 결과에서는 제안된 학생증 인식 방법이 학번 영역 추출과 개별 문자 인식에 효율적인 것을 보이고 인식된 개련 문자들을 데이터 베이스에 저장하여 웹환경에서 학생정보를 관리한다

  • PDF

소아 어린이에 대한 SPM 분석에서 성인 template image에 정규화된 영상의 유용성 평가

  • 신동호;박성옥;권수일;조철우;이명훈;윤석남;오은영
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.68-68
    • /
    • 2003
  • SPM(Statistical Parametric Mapping)은 개인의 서로 다른 조건에서의 뇌영상이나 환자그룹간의 functional image data를 비교분석 하는데 강력한 기능을 가지고 있다.

  • PDF

SVM과 LDA를 이용한 마커 검출 및 인식의 성능 향상 (Performance Enhancement of Marker Detection and Recognition using SVM and LDA)

  • 강선경;소인미;김영운;이상설;정성태
    • 한국멀티미디어학회논문지
    • /
    • 제10권7호
    • /
    • pp.923-933
    • /
    • 2007
  • 본 논문에서는 SVM(Support Vector Machine)과 LDA(Linear Discriminant Analysis)를 이용하여 사각형 형태 마커 검출 및 인식의 성능을 향상시키는 방법을 제안한다. 본 논문의 방법에서는 사각형 형태의 마커 검출을 위하여 입력 영상을 이진 영상으로 변환하고 객체들의 윤곽선을 추출한 다음에 윤곽선을 선분으로 근사화 한다. 근사화된 선분으로부터 기하학적 특징을 이용하여 사각형을 찾는다. 마커의 사각형 영역을 찾은 다음에는 워핑 기법과 확대/축소 변환을 이용하여 사각형 영상을 정사각형 형태로 정규화한다. 정사각형 형태로 정규화한 다음에는 주성분 분석을 적용하여 특징 벡터의 크기를 줄인 다음에 SVM을 이용하여 마커 영상인지 아닌지를 검사한다. 마커 영상으로 판별된 영상에 대하여 LDA를 적용하여 특징 벡터의 크기를 더 줄이고 표준 마커에 대한 특징 벡터와의 최소 거리법에 의해 마커의 종류를 인식한다. 인식 실험 결과 SVM을 사용함으로써 마커 검출의 오류를 줄일 수 있었고 LDA를 사용함으로써 특징 벡터의 크기는 줄어들고 인식률이 높아짐을 알 수 있었다.

  • PDF

중증환자 인터페이스를 위한 마커 인식 시스템 (Marker Recognition System for the User Interface of a Serious Case)

  • 소인미;강선경;김영운;정성태
    • 정보처리학회논문지B
    • /
    • 제14B권3호
    • /
    • pp.191-198
    • /
    • 2007
  • 본 논문에서는 거동이 불편한 환자를 위하여 주변 환경에 놓여 있는 기기들에 대한 제어와 간호사를 호출하는 간단한 의사소통 등을 위한 몇 가지 사각형 형태의 마커를 제시하고 이 마커들을 카메라 영상으로부터 검출하고 인식하는 방법을 제안한다. 본 논문에서는 사각형 형태의 마커 검출을 위하여 다중 임계값을 사용하여 입력 영상을 이진 영상으로 변환하고 객체들의 윤곽선을 추출한 다음에 윤곽선을 선분으로 근사화한다. 근사화 된 선분으로부터 기하학적 특징을 이용하여 사각형을 찾는다. 마커의 사각형 영역을 찾은 다음에는 워핑 기법을 이용하여 사각형 마커 영상을 정사각형 형태로 정규화한다. 마커 영상을 정규화한 다음에는 주성분 분석을 통하여 마커 영상으로부터 특징 벡터를 추출하고 마커의 종류를 인식한다. 본 논문의 시스템은 다중 임계값을 이용하여 조명에 견고하며 워핑 기법과 주성분 분석을 이용하여 촬영 각도에 견고하다. 총 21개의 마커를 설계하여 인식 실험한 결과 최대 100%의 인식률을 얻을 수 있었고 초당 12프레임의 수행속도로 조명과 각도 변화에 견고한 인식 결과를 얻을 수 있었다.

실시간 객체 검출을 위한 개선된 Haar-like Feature 정규화 방법 (An Improved Normalization Method for Haar-like Features for Real-time Object Detection)

  • 박기영;황선영
    • 한국통신학회논문지
    • /
    • 제36권8C호
    • /
    • pp.505-515
    • /
    • 2011
  • 본 논문에서는 객체 검출에 사용되는 Haar-like feature의 정규화 방법에 대해 다룬다. 기존의 Haar-like feature의 분산 정규화는 후보 윈도우 픽셀들에 대한 표준편차 계산에 사용되는 별도의 적분 영상 생성을 위해 많은 연산을 필요로 했으며 밝기 변화가 작은 영역에서 오검출이 증가하는 문제를 가지고 있으나, 제안하는 정규화 방법은 별도의 적분 영상을 사용하지 않아 처리 속도가 빠르며 제안하는 방법을 사용하여 학습시킨 분류기는 밝기 변화에 대해 강건한 성능을 보인다. 실험 결과 제안한 방법을 사용했을 때 객체 검출기의 처리 속도는 26% 향상 되었으며, 제안한 방법을 사용하여 학습시킨 분류기들은 5% 이상 향상된 검출률을 보였으며, 밝기 변화가 심한 경우는 45% 향상된 검출률을 보였다.

비선형 평활화와 다차원의 명암변화에 기반을 둔 영상인식 (Image Recognition Based on Nonlinear Equalization and Multidimensional Intensity Variation)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.504-511
    • /
    • 2014
  • 본 논문에서는 영상의 비선형 평활화와 다차원의 명암변화에 기반을 둔 조합형 인식기법을 제안하였다. 여기서 비선형 평활화는 적응적 변형의 히스토그램 재조정 전처리 기법으로 영상의 밝기를 조정하여 화질을 개선하기 위함이다. 다차원의 명암변화는 인접 픽셀간의 밝기변화를 4단계로 나누어 고려함으로써 영상의 속성을 더욱 더 정확하게 반영하기 위함이고, x축과 y축의 2방향 각각의 명암변화를 고려한 정규상호상관계수는 좀 더 포괄적으로 영상의 유사성을 측정하기 위함이다. 제안된 기법을 50개 40*40 픽셀의 명암도 변화를 가지는 얼굴영상들을 대상으로 실험한 결과, 평활화를 수행하지 않거나 선형 평활화를 수행한 기법에 비해 각각 영상의 속성을 잘 반영한 우수한 인식성능이 있음을 확인하였다.

네트워크 카메라 영상에서 원근감 효과를 고려한 군집 움직임 분석 (The Crowd Activity Analysis based on Perspective Effect in Network Camera)

  • 이상걸;박현준;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.415-418
    • /
    • 2008
  • 본 논문에서는 특정 지역을 연속해서 촬영하는 고정된 카메라 영상에서 사람들의 움직임을 검출하고 움직임을 분석하여 정량화 하는 방법을 제안한다. 먼저 배경 영상을 획득하기 위하여 일정 시간동안의 입력 영상을 누적하고 평균값으로 정규화 한다. 그리고 영상을 계속 누적하여 배경 영상을 실시간으로 갱신한다. 다음으로 획득된 배경 영상과 현재 영상에 대하여 차영상과 이진화를 수행하고 팽창 연산과 연결 성분 분석으로 잡영을 제거한다. 그리고 잡영이 제거된 영상에서 원근감 효과를 고려하는 가중치를 적용하여 움직임이 있는 객체를 클러스터링 하는 수정된 ART2 클러스터링 방법을 제안한다. 마지막으로 클러스터링 결과 정보를 이용하여 움직임을 정량화 한다. 제안하는 방법을 실내 환경에 설치된 네트워크 카메라로부터 영상을 획득하여 실험한 결과, 영상의 원근감 효과에 따라 군집 크기가 차이남에도 강인하게 분석할 수 있음을 확인하였다.

  • PDF

비선형 평활화와 통계적 상관성에 기반을 둔 인식성능 개선 (An Improvement of Recognition Performance Based on Nonlinear Equalization and Statistical Correlation)

  • 신현수;조용현
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.555-562
    • /
    • 2012
  • 본 논문에서는 영상의 비선형 평활화와 특징들의 통계적 상관성에 기반을 둔 조합형 인식성능 개선기법을 제안하였다. 여기서 비선형 평활화는 로지스틱 함수에 기반을 둔 히스토그램 재조정의 전처리 기법으로 영상의 밝기를 조정하여 화질을 개선하기 위함이다. 통계적 상관성은 정규상호상관계수에 의해 측정되며, 이는 유사도를 좀 더 빠르고 정확하게 측정하기 위함이다. 또한 독립성분분석에 의한 국부적인 특징들을 대상으로 정규상호상관을 계산함으로써 좀 더 정확한 유사도를 통계적으로 측정하기 위함이다. 제안된 기법을 30개 40*50픽셀의 명암도 변화를 가지는 얼굴영상들을 대상으로 실험한 결과, 전처리를 하지 않은 기법이나 기존 및 적응적 변형히스토그램 평활화에 의한 전처리 기법에 비해 각각 영상의 속성을 잘 반영한 우수한 인식성능이 있음을 확인하였다.