• Title/Summary/Keyword: 영상잡음

Search Result 2,225, Processing Time 0.029 seconds

Noise reduction by sigma filter applying orientations of feature in image (영상에 포함된 특징의 방향성을 적용한 시그마 필터의 잡음제거)

  • Kim, Yeong-Hwa;Park, Youngho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1127-1139
    • /
    • 2013
  • In the realization of obtained image by various visual equipments, the addition of noise to the original image is a common phenomenon and the occurrence of the noise is practically impossible to prevent completely. Thus, the noise detection and reduction is an important foundational purpose. In this study, we detect the orientation about feature of images and estimate the level of noise variance based on the measurement of the relative proportion of the noise. Also, we apply the estimated level of noise to the sigma filter on noise reduction algorithm. And using the orientation about feature of images by weighted value, we propose the effective algorithm to eliminate noise. As a result, the proposed statistical noise reduction methodology provides significantly improved results over the usual sigma filtering and regardless of the estimated level of the noise variance.

Noise Reduction of X-ray Image by Spatially Adaptive Thresholding (공간 적응적 임계값 설정을 통한 X-ray 영상의 잡음 제거)

  • Yoo Juwoan;Lee Jongmin;Kim Whoi-Yul Yura
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.934-936
    • /
    • 2005
  • 본 논문에서는 피라미드 계층간에 나타나는 잡음 신호의 특성을 바탕으로 라플라시안 피라미드를 이용한 X-ray 영상의 잡음 제거 방법을 제안한다. 제안하는 방법은 잡음 제거를 위해 X-ray 영상 신호의 지역적 표준 편차와 신호의 영역적 특징을 이용하였다. 지역적 표준 편차는 영상의 경계선 정도와 비례하는 특징을 가지기 때문에 지역적 표준 편차를 이용하여 경계 정보의 손실을 막았다. 또한 라플라시안 피라미드의 각 계층에 잡음 신호가 좁은 면적을 가지며 분포되는 영역적 특징을 이용하여 평평한 지역에서 잡음 신호의 제거 성능을 높였다. X-ray영상 및 잡음이 첨가된 표준 영상에 대한 실험을 통해 제안된 방법이 경계 정보의 유지와 잡음 제거에서 기존의 방법보다 향상된 성능을 보임을 확인하였다.

  • PDF

Training-Based Noise Reduction Method Considering Noise Correlation for Visual Quality Improvement of Recorded Analog Video (녹화된 아날로그 영상의 화질 개선을 위한 잡음 연관성을 고려한 학습기반 잡음개선 기법)

  • Kim, Sung-Deuk;Lim, Kyoung-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.28-38
    • /
    • 2010
  • In order to remove the noise contained in recorded analog video, it is important to recognize the real characteristics and strength of the noise. This paper presents an efficient training-based noise reduction method for recorded analog video after analyzing the noise characteristics of analog video captured in a real broadcasting system. First we show that there is non-negligible noise correlation in recorded analog video and describe the limitations of the traditional noise estimation and reduction methods based on additive white Gaussian noise (AWGN) model. In addition, we show that auto-regressive (AR) model considering noise correlation can be successfully utilized to estimate and synthesize the noise contained in the recorded analog video, and the estimated AR parameters are utilized in the training-based noise reduction scheme to reduce the video noise. Experiment results show that the proposed method can be efficiently applied for noise reduction of recorded analog video with non-negligible noise correlation.

A Study on Image Reduction Algorithm using Spatial Filter in Salt and Pepper Noise Environments (Salt and Pepper 잡음 환경에서 공간 필터를 이용한 영상 복원 알고리즘에 관한 연구)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.346-349
    • /
    • 2017
  • Digital image processing is widely used in a variety of areas, and noise elimination is used as the preprocessing in all the image processing processes. Degradation is occurred in the image data due to multiple reasons. Degradation is to add the noise in the image signal, and salt and pepper noise is the representative one to cause degradation. Therefore, image restoration algorithm was proposed to process with histogram weight filter and median filter by the noise density of local mask to restore the damaged image in the salt and pepper noise environment, in this article. In addition, it was compared with the existing methods using peak signal to noise ratio(PSNR) as the objective determination factor of improvement effect.

  • PDF

Functional Neural Networks for Self-supervised Image Denoising (Functional Neural Networks 기반의 자기 지도적 영상 잡음 제거)

  • Jang, Yeong;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.4-7
    • /
    • 2022
  • 기존 합성곱 신경망 기반의 잡음 제거 네트워크들은 학습을 위한 noisy-clean 데이터 쌍을 필요로 한다. 하지만 실제 카메라 잡음의 경우, 잡음에 대한 깨끗한 원본 영상을 얻는 것은 불가능하거나 많은 비용이 소모된다. 따라서 이러한 방법을 해결하기 위하여 원본 영상 없이 잡음 영상만으로만 잡음 제거 네트워크를 학습하는 방법들이 제안되어왔다. 그 중 카메라 잡음 영상을 처리하기 위한 대표적인 방법으로 학습과 추론에서 비대칭적인 downsampling을 사용하는 AP-BSN이 제안되었다. 본 논문에서는 Functional neural network를 AP-BSN 알고리즘에 적용하여 다양한 downsampling ratio에 대응되는 하나의 네트워크를 학습하였다. 이를 통해 기존 hyperparameter로 사용되던 downsampling ratio에 대한 결과를 하나의 네트워크에서 분석 및 확인하였다. 또한 해당 파라미터를 조절함으로써 다양한 잡음 제거 후보들을 추출하고 사용자가 원하는 잡음 제거 정도를 조정할 수 있도록 하였다.

  • PDF

Impulse Noise Removal Using Noise Detector and Total Variation Optimization (잡음 검출기와 총변량 최적화를 이용한 영상의 임펄스 잡음제거)

  • Lee Im-Geun
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • A new algorithm for removing salt and pepper impulse noise in image using impulse noise detector and total variation optimization is presented. The proposed two types of noise detectors which are based on the adaptive median filter, can detect impulse noise with high accuracy while reducing the probability of detecting image details as impulses. And the detectors maintain its performance independent of noise density. For removing impulses, total variation optimization is applied only to those detected noise candidate to reduces unnecessary computation. The proposed approach successfully remove impulse noise while preserving image details.

  • PDF

An Image Denoising Algorithm Using Multiple Images for Mobile Smartphone Cameras (스마트폰 카메라에서 다중 영상을 이용한 영상 잡음 제거 알고리즘)

  • Kim, Sung-Un
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1189-1195
    • /
    • 2014
  • In this study we propose an image denoising algorithm which manipulates the information obtained from multiple images in the same environment for mobile smart phones. We also envisage a multiple images registration method for mobile smart phone cameras equipped with limited computing ability and present an effective image denoising algorithm combining and manipulating the information obtained from multiple images. We proved that the proposed algorithm has much better PSNR value than the method applying single image. We verified that the propose approach has good denoising quality and can be utilized in the feasible level speed on Android smart phones.

Adaptive Noise Smoothing Algorithm Based on Nonstationary Correlation Assumption (영상의 비정적 상관관계 가정에 근거한 적응적 잡음제거 알고리즘)

  • 박성철;강문기
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.129-133
    • /
    • 2001
  • 영상에 포함된 잡음은 화질 및 영상의 압축효율을 저하시킨다. 최근 들어, 영상의 에지 성분을 효율적으로 고려하면서 잡음을 제거하기 위하여 다양한 비정적(nonstationary) 영상 모델에 근거한 잡음제거 알고리즘이 제안되어 왔다. 하지만, 기존의 비정적 영상모델에서는 연산량의 부담을 덜기 위하여 각 화소들 사이에 상관관계(correlation)가 없다는 가정을 하고 있어 영상의 미세한 정보들이 필터링에 의하여 훼손된다. 본 논문에서는 영상의 비정적 상관관계를 고려한 적응적 잡음제거 알고리즘을 제시한다. 영상신호는 비정적 평균을 가진다고 가정되며, 또한 각기 다른 정적(stationary) 상관관계를 가지는 부분 영상으로 분리된다고 가정된다. 제안된 영상 모델에서의 공분산(co-variance) 행렬의 특수한 구조를 이용하여 계산적으로 효율적인 FFT에 기반한 선형 minimum mean square error 필터를 유도한다. 제안된 영상 모델의 정당성 및 알고리즘의 효율성을 제시한다.

  • PDF

The Noise Reduction Using Block Classification and Morphological Filtering (영역분류와 형태학적 필터링을 이용한 잡음제거)

  • 김인겸;정연식
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.3
    • /
    • pp.57-67
    • /
    • 1999
  • 본 논문에서는 영상 부호화시 전처리 과정을 수행함으로써 잡음을 제거하는 새로운 알고리듬을 제안하였다. 제안한 알고리듬은 영상의 선명도를 유지할뿐아니라 전체적인 부호화 효율을 높여준다. 효율향상 과정은 다음과 같다. 첫째 블록 특성에 다라 영역을 분류하며, 둘째로는 Canny 연산자와 Sobel 연산자를 이용하여 경계선 방향을 얻는다. 세 번째로 블록 특성과 경계선 방향에 따라 방향성 형태학적 필터를 구한다. 형태학적 필터링은 영상내 존재하는 잡음을 제거하고, 표준 영상의 경우 인간이 시각적으로 느낄 수 없는 성분을 제거한다. 형태학적 필터링은 경계선 성분을 손실시키는 결과가 발생하지만, 제안한 알고리듬은 손실된 경계선 영역을 복원하는 과정을 거친다. 그러한 과정의 결과로, 전체적인 부호화 효율이 향상된다. 특히, 제안한 알고리듬을 적용한 표준영상의 경우, 약 50-50%의 비트 발생량이 줄어드는 결과를 나타내었다. 잡음 분산값을 달리하여 만든 잡음 영상에 제안한 방법을 적용한 결과, 영상의 선명도를 유지하였다. 제안한 알고리듬은 인간의 시각 특성을 고려한 미세한 잡음 제거 방법에서 우수한 성능을 나타내었으며, 영상의 선명도를 유지하는 것을 보여 주었다.

  • PDF

Estimation of the Noise Variance in Image and Noise Reduction (영상에 포함된 잡음의 분산 추정과 잡음제거)

  • Kim, Yeong-Hwa;Nam, Ji-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.905-914
    • /
    • 2011
  • In the field of image processing, the removal noise contamination from the original image is essential. However, due to various reasons, the occurrence of the noise is practically impossible to prevent completely. Thus, the reduction of the noise contained in images remains important. In this study, we estimate the level of noise variance based on the measurement of the relative strength of the noise, and we propose a noise reduction algorithm that uses a sigma filter. As a result, the proposed statistical noise reduction methodology provides significantly improved results over the usual sigma filtering regardless of the level of the noise variance.