Proceedings of the Korean Information Science Society Conference
/
한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
/
pp.805-807
/
2004
본 논문에서는 노이즈 모델에 기반한 훼손된 얼굴 영상의 인증하는 방법을 제안한다. 제안된 방법은 먼저 학습 단계에서 노이즈 파라미터의 변화에 의해 훼손된 영상을 생성한다. 그 훼손된 영상과 노이즈 파라미터는 PCA에 의해 훼손된 영상과 노이즈 파라미터들의 선형 조합으로 표현된다. 테스트 단계에서는 훼손된 영상으로 LSM(Least-square minimization)방법을 적용하여 훼손된 영상의 노이즌 파라미터를 추정한다. 그리고 추정된 노이즈 파라미터를 가지고 원본 영상으로부터 합성된 영상을 생성하고, 그것을 테스트 영상과 인증한다. 실험 결과는 제안된 방법이 노이즈 파라미터를 정확하게 추정하여 얼굴 인증의 성능 개선 가능성을 보여준다.
Recently, deep learning-based denoising approaches have been actively studied. In particular, with the advances of blind denoising techniques, it become possible to train a deep learning-based denoising model only with noisy images in an image domain where it is impossible to obtain a clean image. We no longer require pairs of a clean image and a noisy image to obtain a restored clean image from the observation. However, it is difficult to recover the target using a deep learning-based denoising model trained by only noisy images if the distribution of the noisy image is far from the distribution of the clean image. To address this limitation, unpaired image denoising approaches have recently been studied that can learn the denoising model from unpaired data of the noisy image and the clean image. ISCL showed comparable performance close to that of supervised learning-based models based on pairs of clean and noisy images. In this study, we propose suitable normalization techniques for each purpose of architectures (e.g., generator, discriminator, and extractor) of ISCL. We demonstrate that the proposed method outperforms state-of-the-art unpaired image denoising approaches including ISCL.
Seo, Seok-Tae;Lee, In-Geun;Jeong, Hye-Cheon;Gwon, Sun-Hak
Proceedings of the Korean Institute of Intelligent Systems Conference
/
한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
/
pp.171-174
/
2006
기존에 사용되고 있는 노이즈 제거 필터인 평균값 필터, 중간값 필터 등의 필터를 이용하여 노이즈 포함 영상을 복원할 경우, 몽롱화 현상이 발생하게 되며 이러한 몽롱화 현상은 마스크의 크기가 달라짐에 따라서 심해지는 경향을 보인다. 본 논문은 노이즈가 포함된 입력 영상의 픽셀 주변 환경에 기반하여 점증적으로 노이즈를 제거하여 입력영상을 변환 시켜, 몽롱화의 현상을 줄이고, 정보의 추출이 용이하도록 영상을 복원하는 점증적 노이즈 제거 필터를 제안한다. 또한 노이즈에 의해서 훼손된 입력 영상의 복원을 통하여 제안된 노이즈 제거 필터의 효용성을 보인다.
The digital medical imaging, especially, computed tomography (CT), should necessarily be considered in terms of noise distribution caused by converting to X-ray photon to digital imaging signal. Recently, the denoising technique based on deep learning architecture is increasingly used in the medical imaging field. Here, we evaluated noise reduction effect according to various noise types based on the U-net deep learning model in the lung CT images. The input data for deep learning was generated by applying Gaussian noise, Poisson noise, salt and pepper noise and speckle noise from the ground truth (GT) image. In particular, two types of Gaussian noise input data were applied with standard deviation values of 30 and 50. There are applied hyper-parameters, which were Adam as optimizer function, 100 as epochs, and 0.0001 as learning rate, respectively. To analyze the quantitative values, the mean square error (MSE), the peak signal to noise ratio (PSNR) and coefficient of variation (COV) were calculated. According to the results, it was confirmed that the U-net model was effective for noise reduction all of the set conditions in this study. Especially, it showed the best performance in Gaussian noise.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
한국방송공학회 2014년도 하계학술대회
/
pp.226-229
/
2014
본 논문은 효과적인 열화영상의 복원을 위해 Multiresolution Bilateral Filter (MBF) 기반의 구간적 노이즈 분석을 제안한다. 기존의 MBF 알고리즘은 최적화되지 않은 노이즈 추정 값을 중첩적으로 사용하다보니 over smoothing 현상이 발생되는 결과가 도출되기도 하였다. 이에 따른 보완점으로 열화영상 내 전체 화소를 일정한 블록 단위의 영역으로 나누어, 영상특성을 최대한 보존하며 노이즈제거를 진행하기 위해 블록 단위의 영역 내에서 노이즈 추정을 위한 파라미터를 추가한다. 실험을 통해 제안된 알고리즘이 노이즈 추정을 수행하여 얻어진 노이즈의 분산 값을 보다 정확히 추정하였고, 이로 인하여 향상된 노이즈 제거 영상 획득이 가능함을 확인할 수 있었다.
초분광 영상은 기존의 다중분광 영상보다 많은 파장대의 영상을 취득하기 때문에 다양한 분야의 연구에 이용되고 있다. 하지만 밴드별로 취득하는 파장대가 짧고 밴드수가 많아, 밴드간의 높은 상관관계 및 노이즈 밴드가 존재한다. 이로 인해 기존에 알려진 분석기법의 적용결과가 제대로 도출되지 않는다. 따라서 초분광 영상을 이용할 경우, 노이즈가 많이 포함된 밴드를 제거한 후 영상분석을 하는 것이 보다 효율적이다. 본 연구에서는 초분광 영상(Hyperspectral Image)의 전처리 과정 중 노이즈 밴드 제거에 초점을 맞추었으며, 이를 위해 프랙탈 차원을 이용하였다. 프랙탈 차원 측정방법 중 삼각기둥 표면적 기법을 이용하였다. 프랙탈 차원을 측정하고, Continuum Removal 기법을 이용하여 경향을 살펴보았다. 경험적으로 구한 임계값을 통해 상대적으로 정보량이 적은 밴드를 노이즈 밴드로 판단하여 제거하였다. 실험 영상으로는 EO-1 위성에서 취득되는 Hyperion 초분광 영상을 사용하였다. 실험 결과 프랙탈 분석을 통해 Hyperion 초분광 영상의 노이즈 밴드를 자동으로 추출하여 제거할 수 있음을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2013년도 춘계학술발표대회
/
pp.285-288
/
2013
의료영상에서의 노이즈는 환자 진단에 있어서 막대한 영향을 미치는 영상의 화질을 떨어트림으로써, 진단에 대한 유효성을 낮추게 된다. 특히, 현재 이슈화 되고 있는 저선량 의료영상은 기존의 고선량 의료영상보다 노이즈 레벨이 높으며, 이에 따라서 의료영상에서의 노이즈 제거 기술은 매우 중요한 사안으로 부각되고 있다. 본 논문에서 제시하는 노이즈 제거 기술은 각각의 투영 영상을 여러개의 부대역(sub-band)으로 분해하는 것으로부터 시작한다. 분해된 각각의 부대역 영상은 엣지 검출기를 통하여 엣지 부분과 평탄한 영역으로 구별되어 진다. 검출된 엣지는 0 ~ 1 사이의 값으로 정규화 되며, 퍼지기반의 연산을 통하여 엣지의 확실성을 나타내는 엣지맵으로 변환하게 된다. 이 엣지맵을 통하여 각 부대역 영상의 필터링 정도를 제어하고, 분해된 각 부대역을 결합하는 방식을 취함으로써 영상의 엣지 부분을 최대한 보존하면서 노이즈는 효과적으로 제거하도록 하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
한국방송∙미디어공학회 2019년도 하계학술대회
/
pp.272-273
/
2019
VVC(Versatile Video Coding)는 YUV 입력 영상에 대하여 Luma 성분과 Chroma 성분에 대하여 각각 다른 최적의 방법으로 블록분할 후 해당 블록에 대해서 화면 내 예측 또는 화면 간 예측을 수행하고, 예측영상과 원본영상의 차이를 변환, 양자화하여 압축한다. 이 과정에서 복원영상에는 블록화 노이즈, 링잉 노이즈, 블러링 노이즈 발생한다. 본 논문에서는 인코더에서 원본영상과 복원영상의 잔차신호에 대한 MAE(Mean Absolute Error)를 추가정보로 전송하여 이 추가정보와 복원영상을 이용하여 Deep Learning 기반의 신경망 네트워크로 영상의 품질을 높이는 방법을 제안한다. 복원영상의 노이즈를 감소시키기 위하여 영상을 $32{\times}32$블록의 임의로 분할하고, DenseNet기반의 UNet 구조로 네트워크를 구성하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
한국해양정보통신학회 2008년도 추계종합학술대회 B
/
pp.463-466
/
2008
With the development of Information Technology in recent years, the image has been an important means to store or express information. Generally, during the process of acquiring and storing images, the images can be corrupted by noise of which typical types are Impulse(Impulse Noise) and AWGN(Addiction White Gaussian Noise). Impulse noise shows irregularly in black and white over the length and breadth of the image by sharp and sudden disturbance of the image signal. In the Impulse noise environment, SM(Standard Median) filter would be used because of its good noise removal performance and simple algorithm. However, when SM filter removes noise, it also produces error at the edge of image and causes whole image quality deterioration. In this paper, we propose a method based on modified nonlinear filter operation scheme which enhances the features of noise removal and detail image preservation when restoring image in Impulse noise environment. And, we compared it with existing methods and the performances through simulation.
Proceedings of the Korean Information Science Society Conference
/
한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
/
pp.859-861
/
2005
X-ray를 이용한 CT(Computed Tomography : 이하 CT)영상은 사물에 대해 회전하면서 X-ray가 투과하여 감약 정도에 따라서 영상을 획득하지만 검사 목적과는 관계없이 발생되는 통계적인 오차로 인해 정확한 CT영상의 구성을 교란하거나 방해하여 영상의 질을 저하시키고 미세 부분의 관찰 능력을 감소시키는 장해 음영인 아티팩트(artifact)라는 노이즈가 발생한다. 이러한 노이즈를 제거하는 필터를 설계 할 때는 두 가지 고려해야 할 사항이 있는데 첫째는 영상내의 노이즈을 정확히 판단하여 효과적으로 제거해야 하며, 둘째로는 원래의 영상에 가깝도록 경계와 같은 세부 영역을 보존해야 한다는 점이다. 기존에는 mean 필터나 median 필터, 그리고 Gaussian 필터 등을 사용했지만 상세한 부분을 보존하기에는 실패하는 단점이 있다. 따라서 본문에서는 wavelet 변환을 하여 영상의 주파수 대역을 저주파 영역과 고주파 영역으로 분리하여 각각의 영역에서 노이즈를 제거할 수 있도록 적합한 필터를 설계하고 방법을 제안하여 그 필터를 CT 3차원 뇌혈관 영상에 적용하여 많은 노이즈를 제거하였고 낮은 Threshold값에서도 작은 혈관을 관찰 할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.