This paper addresses occluded object reconstruction and recognition with computational integral imaging (II). Integral imaging acquires and reconstructs target information in the three-dimensional (3D) space. The reconstruction is performed by averaging the intensities of the corresponding pixels. The distance to the object is estimated by minimizing the sum of the standard deviation of the pixels. We adopt principal component analysis (PCA) to classify occluded objects in the reconstruction space. The Euclidean distance is employed as a metric for decision making. Experimental and simulation results show that occluded targets are successfully classified by the proposed method.
In this paper, we proposed a contour shape description method which use the CFR(contour fluctuation ratio) feature. The CFR is the ratio of the line length to the curve length of a contour segment. The line length means the distance of two end points on a contour segment, and the curve length means the sum of distance of all adjacent two points on a contour segment. We should acquire rotation and scale invariant contour segments because each CFR is computed from contour segments. By using the interleaved contour segment of which length is proportion to the entire contour length and which is generated from all the points on contour, we could acquire rotation and scale invariant contour segments. The CFR can describes the local or global feature of contour shape according to the unit length of contour segment. Therefore we describe the shape of objects with the feature vector which represents the distribution of CFRs, and calculate the similarity by comparing the feature vector of corresponding unit length segments. We implemented the proposed method and experimented with rotated and scaled 165 fish images of fifteen types. The experimental result shows that the proposed method is not only invariant to rotation and scale but also superior to NCCH and TRP method in the clustering power.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2005.11a
/
pp.35-38
/
2005
압축된 영상의 비트스트림에 오류가 발생할 경우 영상을 원할 때 심각한 왜곡이 발생하고, 이 때문에 멀티미디어 서비스에서 오류 보상 방법은 더욱 중요한 기술로 대두되고 있다. 기존의 연속된 블록을 복원하는 Hsia방법에서는 상하에 인접한 블록의 경계면에 따라 화소 값을 비교하고 정합벡터를 구하였다. 이와 같이 구해지 정합벡터는 주변 블록의 에지 분포에 대한 고려가 배제되기 때문에 정확한 블록의 복원을 이루어낼 수 없다. 이러한 문제를 해결하기 주변 블록의 에지 분포를 고려한다. 오류 블록을 중심으로 상단과 하단의 에지 분포를 고려하여 에지 방향으로 보간한다. 이때 에지 검출을 위해 Sobel 연산자를 이용하고 그 임계값은(Just-Noticeable-Distortion)/MND(Minimally- Noticeable Distortion)로 한다. 에지의 뭉개짐 현상을 막기 위하여 상단 블록과 하단 블록에 에지가 존재 하지 않을 때와 존재할 때를 구분해서 보간한다. 연속된 블록에 발생한 오류를 제안하는 방법으로 보상 할 경우 PSNR이 최대 2dB이상 향상된다.
A HEVC-compatible 3D video coding method (3D-HEVC) has been recently developed as an extension of the high efficiency video coding (HEVC) standard. In order to efficiently deal with the multi-view video plus depth (MVD) format, 3D-HEVC exploits an inter-component prediction which allows the prediction between texture and depth map images in addition to a temporal prediction used in the conventional single layer video coding such as H.264/AVC and HEVC. The performance of the inter-component prediction is normally affected by the accuracy of the disparity vector, and thus it is important to have an accurate disparity vector used for the inter-component prediction. This paper, therefore, introduces a disparity derivation method and inter-component algorithms using the disparity vector for the efficient 3D video coding. Simulation results show that the 3D-HEVC provides higher coding performance compared with the simulcast approach using HEVC and the simple multi-view extension (MH-HEVC).
X-선 검색장치는 대상체의 단면을 스캔하여 결과를 확인하기 때문에 정확성이 낮다는 것이 문제점으로 지적되어왔다. 이를 개선하기 위하여 선행연구로 스테레오 X-선 검색장치를 개발하여 단일 대상체에 대하여 윤곽선 정합 및 볼륨기반 형상복원 연구를 수행하였다. 본 연구에서는 스테레오 X-선 검색장치를 이용하여 두 개의 중첩된 대상체를 스캔하여 형상을 분리 복원하기 위한 연구를 진행하였다. 중첩 대상체에 대한 분리 복원을 위해 벡터정보의 거리값을 계산하여 내 외부 복셀을 분리하고 중첩부분에 대한 제거는 Z축을 기준으로 임계치를 두어 분리하는 알고리즘을 제안하였다. 3차원 스테레오 X-선 검색장치에 대한 스캔영상의 형상복원 알고리즘 개선을 통해 제한된 스캔환경에서 집적화된 대상체의 검색을 가능하도록 할 것이다.
Kim, Jung-Sik;Kim, Jong-Yoon;Kim, Jin-Mo;Cho, Hyung-Je
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.369-372
/
2011
본 논문에서는 가상현실 및 게임, 로봇인지 분야에서 쓰일 수 있는 실시간 얼굴인식을 제안한다. 현대 사회는 영상처리 기술의 발달로 인하여 많은 자동화 시스템이 개발된다. 빠르게 발전하는 정보화 시대에 사람과 컴퓨터 사이의 상호작용(Interaction)은 매우 중요하며 보다 빠르고 정확한 시스템이 요구된다. 전통적인 얼굴인식 방법인 주성분 분석(PCA)은 영상의 크기에 따라 계산의 복잡도가 증가하고, 특징 벡터를 구하기 위해 많은 연산을 해야 하는 문제가 발생하지만 GPU를 이용할 경우 반복적 계산의 효율적 처리가 가능하여 뛰어난 성능을 낼 수 있는 장점이 있다. 본 논문에서는 이러한 범용 GPU사용 기술 중 nVidia에서 제공하는 CUDA를 활용한 실시간 얼굴 인식 시스템을 제안하고, 실험을 통해 성능을 검증한다.
This paper describes and analyzes IBC (intra block copy) in HEVC (high efficiency video coding) SCC (screen content coding) to improve the coding efficiency of IBC. HEVC SCC reference software SCM 2 is employed to analyze the selection ratio of IBC which is newly adopted in HEVC SCC, and the tools for IBC such as the block vector prediction and block vector coding method are evaluated. Experimental results show the average IBC selection ratio is 31.08% and 0.33% in I-Slice and B-Slice, respectively. Based on this results, the coding efficiency of IBC could be improved by utilizing IBC selectively. In addition, analysis tests of block vector prediction and the block vector coding method show the current methods are not efficient to screen content videos, and the analysis results are presented to improve these methods.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.321-324
/
2002
본 논문에서는 다양한 환경하에서 인간의 식별과 감정을 인식할 수 있는 감정 인식 알고리즘을 제안한다. 제안된 알고리즘을 구현하기 위해, 먼저, CCD 칼라 카메라에 의해 획득한 원 영상으로부터 피부색을 이용해 얼굴영상을 얻는 과정을 거친다. 그 다음, 주요 요소분석을 기본으로 하는 얼굴인식기술인 Eigenface를 사용하여 이미지들을 고차원의 픽셀공간으로부터 저차원공간으로의 변환하는 파정을 거친다. 제안된 개인에 대한 식별과 감성인식은 사용한 특징벡터들의 추출로 인한 Eigenface의 가중치와 상관관계를 통해 이루어진다 즉, 영상의 가중치로부터 개인에 대한 식별과 감성정보를 찾는 방법을 제안한다. 마지막으로, 실험을 통해 제안된 방법의 응용가능성을 보인다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.47
no.3
/
pp.29-35
/
2010
This paper discusses a method that can enhance the exactness of depth estimation of an image by PCA(Principle Component Analysis) based on feature reduction through learning algorithm. In estimation of the depth of an image, hyphen such as energy of pixels and gradient of them are found, those selves and their relationship are used for depth estimation. In such a case, many features are obtained by various filter operations. If all of the obtained features are equally used without considering their contribution for depth estimation, The efficiency of depth estimation goes down. This paper proposes a method that can enhance the exactness of depth estimation of an image and its processing speed is considered as the contribution factor through PCA. The experiment shows that the proposed method(30% of an feature vector) is more exact(average 0.4%, maximum 2.5%) than using all of an image data in depth estimation.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.07a
/
pp.422-423
/
2010
최근 Encoding과정에 비용이 많이 들어가는 MPEG계열의 압축 기술과 다르게 Encoding과 Decoding에 적절히 비용을 분산시키는 Distributed Video Coding(DVC)에 대한 연구가 활발히 진행되고 있다. 이는 휴대용 멀티미디어 기기들의 발전으로 영상 압축에 대한 비용을 분산시킬 필요가 발생했기 때문이다. 이때 Decoding과정에서 생성되는 side information의 정확성은 Winer-Ziv 프레임 복원에 대한 parity비트에 영향을 줘 압축 성능에 큰 영향을 준다. 이에 본 논문은 DVC에 사용할 수 있는 보다 정확한 Frame Interpolation방법을 제안한다. 단일 방향 예측을 통해 움직임 벡터를 생성하고 비어있는 공간에 대해 분산을 이용, Dominant MV와 픽셀평균값을 이용하여 프레임을 생성한다. 이는 기존 frame interpolation방법에 비해 비용이 적게 들고, 화질은 그대로 유지할수 있는 장점이 있다. 이를 확인하기 위해 DVC기법에 사용되는 frame interpolation에 제안하는 알고리즘을 적용하여 실험을 진행하였으며 다른 알고리즘들과 비교해 화질은 유지하고 계산량은 줄일수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.