• Title/Summary/Keyword: 영기구성

Search Result 132, Processing Time 0.029 seconds

An Estimation Study of Watershed Pollution Load Reduction Using Environmental Capacity (환경용량을 고려한 유역 오염부하삭감량 추정 연구)

  • Jung, Jae-Sung;Park, Young-Ki;Kim, Jong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1265-1273
    • /
    • 2006
  • The environmental capacity and watershed pollution load reduction of Yongdam reservoir were estimated by the simulation of water quality variation process with the target water quality establishment, pollution load estimation and flow analysis. The potable raw water $I{\sim}II$, COD $1.0{\sim}3.0$ mg/L and TP $0.01{\sim}0.03$ mg/L were selected as the target water quality Yongdam reservoir water quality model was constructed with WASP5 contained 42 segments and the correlation of calibrated results were BOD 0.73, $PO_4-P$ 0.98. The environmental capacity for target quality COD 2.0 mg/L and TP 0.02 mg/L were BOD $131,880{\sim}4,694$ kg/d, TP $7,855 {\sim}167$ kg/d which were less than exists, and the related reduction ratios were BOD $51{\sim}62%$, TP $47{\sim}67%$ which were middle amount in exists. The load reduction ratios to meet the potable raw water $I{\sim}II$ were BOD $72{\sim}16%$, TP $78{\sim}36%$ in existing conditions and BOD $81{\sim}44%$, TP $84{\sim}52%$ in new conditions. BOD was the least one and TP was the second least in 4 results. The effects of the load reduction assignment to subbasin were dominant in TP but little in COD.

Development of Web Credibility Evaluation Model Using AHP (AHP를 이용한 웹 사이트 신뢰성 평가 모델 개발)

  • Kim, Young-Kee
    • Journal of Korean Library and Information Science Society
    • /
    • v.39 no.4
    • /
    • pp.51-69
    • /
    • 2008
  • This study tired to develop the web credibility evaluation model by calculating weighted values and sensitivities of indicators which presented on preceding researches using Analytic Hierarchy Process. "Expert Choice 2000" was used as the tool for analysing AHP. 25 experts are answered for this questionnaire who are selected by judgement sampling method, one of the non-probability sampling method. Also, sensitivity analyses was performed to graphically see how the alternatives change with respect to the importance of the indicators or sub-indicators. The main results are summarized as followings; i) importance analysis in first level factors: trust-worthiness(0,606), expertness(0.222), safety(0.173), ii) importance analysis in second level factors: trustfulness (0.519), reputation(0.087), usefulness (0.102), timeliness(0,093), competency(0.027), security(0.115), reliability(0,058). iii) some of the importance analysis in third level factors: the site provides comprehensive information that is attributed to a specific source(0.252), the site has articles that list citations and references(0.153), the site contains user opinions and reviews(0.072), etc. iv) sensitivity analyses showed that the importance of the indicators or sub-indicators are slightly changed with respect to the alternatives change.

  • PDF

Analysis of Scenarios for Environmental Instream Flow Considering Water Quality in Saemangeum Watershed (새만금유역의 수질을 고려한 환경유지용수의 시나리오 분석)

  • Kim, Se-Min;Park, Young-Ki;Won, Chan-Hee;Kim, Min-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.117-127
    • /
    • 2016
  • In this study, analyzed scenarios of the environmental instream flow for water quality improvement in Saemangeum watershed. In order to get an environmental instream flow, Methodology is selected for Retention-Basin, reservoir expansion, new dam construction, Modification of water intake and drainage system, Rearrangement of plan for system which Yongdam and Seomjin river dam have been used water supply. The study composed of diverse scenario of Environmental instream flow increasement and analyzed the effect of improving the water quality by the QUAL2K model and calculation of runoff for saemangeum watershed by SWAT model. The following water quality indicators have been simulated in irrigation and non-irrigation period for BOD and T-P. When scenarios applied to water quality model, Improvement rate in the water quality for Total Maximum Daily loads of Mankyung B unit watershed during irrigation and non-irrigation period is BOD (28.70%), T-P (17.09%) and BOD (28.51%), T-P (28.68%) respectively. Dongjin A unit watershed during irrigation and non-irrigation period is BOD (14.39%), T-P (14.59%) and BOD (15.54%), T-P (19.46%) similary. Simulation results is to quantify the constribution of the improvement in the water quality. In particular, It was demonstrative that improving effect for water quality was evaluated to be great in non-irrigation period.

Prediction of water quality change in Saemangeum reservoir by floodgate operation at upstream (상류제수문 방류조건에 따른 새만금호의 수질변화 예측)

  • Kim, Se Min;Park, Young Ki;Lee, Dong Joo;Chung, Mahn
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.373-386
    • /
    • 2017
  • This study simulated water quality item and flow rate of subbasin for Saemangeum watershed using Soil and Water Assessment Tool (SWAT) model and Environmental Fluid Dynamics Code (EFDC) model which simulate hydraulic and water quality in three-dimensions. The simulated values corresponded to observed value well. The result of simulation for floodgate operations at the M3 and M5 points, it exceeds water quality standard and at the M3 and D3 points, change of range for concentration is too wide, and upstream of Saemangeum reservoir is sensitive to inflow flow rate. Compared to the annual average concentration for observed station according to the discharge conditions, improvement of water quality for upstream was apparently compared to the downstream. Range of influence for change of water quality presented that maximum discharge condition, the influence range is 22 km in the direction of the Saemangeum downstream from the Mankyung bridge, and 15 km in the downstream direction of saemangeum in the Dongjin bridge. This study result demonstrated that floodgate operating at upstream has significant influence on water quality management of Saemangeum reservoir and it needs to be considered in plans of water quality management for Floodgate operation on Saemangeum reservoir.

Difference Across Indutries of Innovation Appropriability Mechanism's Effectiveness and Classification (기술혁신 보상확보 메커니즘 효과성의 산업별 차이와 유형)

  • Park, Seong Taek;Kim, Young Ki
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.135-144
    • /
    • 2014
  • In devising technological innovation strategies and implementing successful technological innovation, some of the most important factors may be to determine whether to protect technological innovation and to choose how to protect it. Traditionally, technological innovation has been emphasized to obtain compensation as much as possible for innovation in terms of economics and strategy. However, it can be regarded as a very complicated problem to determine such a protection and its level. Generally speaking, enterprises have some common mechanisms to secure compensation for technological innovation, which are known to be patents, secrecy and lead time advantage. From the standpoint of enterprises, it is very important what strategies should be devised to secure profits for technological innovation. According to some domestic and oversea research results revealed that specific patents are not the best way to Appropriability for technological innovation, while also implying that there exist several different kinds of mechanisms to Appropriability for technological innovation in each industry. Nevertheless, since it shouldn't be ignored that most of the researches have overlooked the characteristics of Korean enterprises and industrial differences, this study intends to clarify the effectiveness of technological innovation Appropriability mechanisms reflecting actual circumstances and industrial characteristics in Korea while classifying them. Also The questionnaires and delphi method used in this study. As the result of analysis, in the entire industries, the priorities turned out to be in the order of Superior sales and service efforts, Leadtime advantage, Complementary manufacturing.

Preparation and Characterization of a Sn-Anode Fabricated by Organic-Electroplating for Rechargeable Thin-Film Batteries (유기용매 전해조를 이용한 리튬이차박막전지용 Sn 음극의 제조)

  • Kim, Dong-Hun;Doh, Chil-Hoon;Lee, Jeong-Hoon;Lee, Duck-Jun;Ha, Kyeong-Hwa;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.284-288
    • /
    • 2008
  • Sn-thin film as high capacitive anode for thin film lithium-ion battery was prepared by organic-electrolyte electroplating using Sn(II) acetate. Electrolytic solution including $Li^+$ and $Sn^{2+}$ had 3 reduction peaks at cyclic voltammogram. Current peak at $2.0{\sim}2.5\;V$ region correspond to the electroplating of Sn on Ni substrate. This potential value is lower than 2.91 V vs. $Li^+/Li^{\circ}$, of the standard reduction potential of $Sn^{2+}$ under aqueous media. It is the result of high overpotential caused by high resistive organic electrolytic solution and low $Sn^{2+}$ concentration. Physical and electrochemical properties were evaluated using by XRD, FE-SEM, cyclic voltammogram and galvanostatic charge-discharge test. Crystallinity of electroplated Sn-anode on a Ni substrate could be increased through heat treatment at $150^{\circ}C$ for 2 h. Cyclic voltammogram shows reversible electrochemical reaction of reduction(alloying) and oxidation(de-alloying) at 0.25 V and 0.75 V, respectively. Thickness of Sn-thin film, which was calculated based on electrochemical capacity, was $7.35{\mu}m$. And reversible capacity of this cell was $400{\mu}Ah/cm^2$.

Effect of Medium Composition on Cell Growth and Bioethanol Production in Clostridium ljungdahlii Culture (Clostridium ljungdahlii 배양에서 배지 조성에 따른 균주 성장과 바이오에탄올 생산에 대한 영향)

  • Ahn, Bohye;Park, Soeun;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2018
  • In this work, effect of the culture medium composition on the fermentation process of Clostridium ljungdahlii, which is acetogenic bacteria to product ethanol from synthesis gas, was examined to improve the microbial growth and ethanol production. Components of the culture medium such as yeast extract, fructose, $NH_4Cl$, and $K_2HPO_4$ were selected as influence factors for the cell growth and ethanol production. As the concentration of yeast extract increased, both of the cell growth and ethanol production increased. And the ethanol productivity was the highest at an yeast extract of 0.05 g/L, which is lower than that of base medium. As the concentration of fructose increased, the cell growth increased, but the ethanol production decreased when the concentration of fructose was higher than that of base medium (5 g/L). In an experiment with the yeast extract of 5 g/L, produced ethanol concentration was the highest (0.297 g/L) when fructose concentration was 5 g/L, however, the specific ethanol productivity was higher (0.281 g/g DCW) when the fructose was not added due to very low cell mass. The cell growth and ethanol production were not significantly influenced by $NH_4Cl$ concentration, however the growth inhibition was observed at a 30 g/L of $NH_4Cl$. When the concentration of $K_2HPO_4$ increased, both of the cell growth and ethanol production increased. In experiments with $NH_4Cl$ and $K_2HPO_4$, specific ethanol productivities were higher when the low concentration of yeast extract was used.

Effect of Vitamin and Sulfur Sources on Syngas Fermentation Using Clostridium autoethanogenum (Clostridium autoethanogenum을 이용한 합성가스 발효에 대한 비타민과 황 공급원의 영향)

  • Im, Hongrae;An, Taegwang;Park, Soeun;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.681-686
    • /
    • 2019
  • In this work, the effect of the culture medium composition on microbial growth and ethanol production in Clostridium autoethanogenum culture was investigated to enhance the ethanol productivity. D-Ca-pantothenate, vitamin B12 (as vitamins), and sodium sulfide (as sulfur source) were selected as examined components, and the effects of components' concentration on cell growth and ethanol production was investigated. For D-Ca-pantothenate concentrations varing from 0.5, 5, 50 and 500 mg/L, a slight increase in the ethanol production was observed at the 0.5 mg/L, but negligible differences in microbial growth and ethanol production were measured for the concentration ranges examined. The effect of vitamin B12 concentrations from 0.1, 1.0, 10, and 100 mg/L on the microbial growth and ethanol production was investigated, and it was found that the ethanol production using a 0.1 mg/L of vitamin B12 concentration increased by 245% compared to that of using the basic medium concentration (10 mg/L). The effect of sodium sulfide concentrations (0.5, 5, and 10 g/L) on the microbial growth and ethanol production was also studied, and the inhibition of microbial growth was observed when the sodium sulfide usage was over 0.5 g/L. In conclusion, changes in D-Ca-pantothenate and sodium sulfide concentrations did not affect the ethanol production, whereas even a 100 times lower concentration of vitamin B12 than that of the basic medium improved the production.

Effect of Heavy Metal on Syngas Fermentation Using Clostridium autoethanogenum (Clostridium autoethanogenum을 이용한 합성가스 발효에 대한 중금속의 영향)

  • Im, Hongrae;Kwon, Rokgyu;Park, Soeun;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.423-428
    • /
    • 2020
  • In this work, we investigated the effect of the concentration of medium components on microbial growth and ethanol production in order to improve ethanol productivity in the Clostridium autoethanogenum culture process using syngas as a sole carbon source. Molybenum, nickel and cobalt (as heavy metal ions) were selected as examined components, and the effects of components concentration on the cell growth and ethanol production was examined. Among molybdenum concentrations of 0, 0.001, 0.01 and 0.1 g/L. a slight increase in ethanol production was observed at 0.001 g/L, but significant differences in the microbial growth and ethanol production were not observed in the examined concentration range. In the case of nickel concentration of 0, 0.001, 0.01 and 0.1 g/L, the change in the microbial growth and ethanol production was investigated, and it was found that the ethanol production using 0.001 g/L increased by 26% compared to that of using the basal medium concentration (0.01g/L). The effect of cobalt concentrations (0, 0.018, 0.18 and 1.8 g/L) on the microbial growth and ethanol production was also investigated, and the inhibition of microbial growth was observed when the cobalt usage was over 0.18 g/L. In conclusion, cobalt did not show any further improvement of ethanol production by changing concentration, however, molybdenum and nickel showed increases in the produced ethanol concentration compared to that of using 1/10 times of the basal medium concentration.

Study for Multi Channel Radiation Detector Using of Microfilm and Carbon Electrode (탄소막 마이크로필름을 이용한 다채널 전리함 개발에 관한 연구)

  • Shin Kyo Chul;Yun Hyong Geun;Jeong Dong Hyeok;Oh Yong Kee;Kim Jhin Kee;Kim Ki Hwan;Kim Jeung Kee
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.111-115
    • /
    • 2005
  • We have designed the multi channel detector for the quality assurance of clinical photon beams. The detector was composed of solid phantom inserted by six plane-parallel ionization chambers at different depth. The chamber as a mini plane parallel chamber was made of carbon coated microfilms. In this study the electrical characteristics of the six chambers in the solid phantom were evaluated using 6 MV photon beam. The leakage currents were less than 0.5 pA, reproducibility was less than 0.5$\%$, linearity was less than 0.5$\%$, and dose rate effect was less than 0.7$\%$. In addition the effect of dose variation from other chambers was estimated to maximum 0.8$\%$ approximately. The developed detector can be used for quality determination in output dosimetry or measurement of percentage depth dose approximately for clinical photon beam.

  • PDF