• Title/Summary/Keyword: 영구앵커공법

Search Result 6, Processing Time 0.026 seconds

Applicability examinations of induced drainage system for reduction of uplift pressure in underpass structures: Numerical study (지하차도 부력저감을 위한 유도배수공법의 적용성 검토: 수치해석적 연구)

  • Jo, Seon-Ah;Jin, Gyu-Nam;Sim, Young-Jong;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.123-134
    • /
    • 2013
  • Urban underground structures at low ground elevations (i.e. shallow substructures) unlike typical tunnel structures are subjected to low overburden and high water pressures. This often causes the underground structures to become damaged. Various conventional methods for the urban underpass structures such as dead weight increasement, round anchors, and tension piles, are significantly conservative and provok concerns about the costly, time-consuming installation process. Recently, permanent drainage system becomes to widely use for supplementing the conventional method's shortcomings, but, it is applied without the considerations for ground conditions and water table. In this study, therefore, numerical analyses are performed with various parameters such as groundwater level, wall height, and ground conditions in order to establish design guidelines for induced drainage system which is a kind of the permanent drainage method constructed at the Y-area. According to the numerical results, the induced drainage system is very effective in reducing the uplift pressure that acts on the base of underpass structures.

Comparison Analysis of the Environmental Impact of VSL Anchors and RBanchors Using a Life-Cycle Assessment (LCA) (LCA를 이용한 확공지압형 앵커와 일반 앵커의 환경영향 특성 비교분석)

  • Ahn, Taebong;Lee, Jaewon;Min, Kyoungnam;Lee, Junggwan;Kwon, Yongkyu
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.558-566
    • /
    • 2015
  • In this study, quantitative environmental impact assessments of the VSL anchor and RB(Reaming and Bearing) anchor systems were conducted after a life-cycle assessment (LCA). In addition, improvements which reduce the adverse environmental effects of the RB anchor system were confirmed through comparisons with results with a VSL anchor system. Both results showed that water ecotoxicity and global warming are the most important in environmental influences. To determine the effect of reducing the RB anchor system environment, the result was normalized for the environmental impact category. Most items appeared to have been improved with regard to the RB anchor system. The most significant improvement was a 77% decrease in POC levels(photochemical oxidant creation). Greenhouse gas emissions, related to global warming, were decreased by 44%. It is expected that these quantitative environmental impact assessment results will serve as the basis of an anchor system for civil engineering and environmental impact assessments.

Prediction of Long-term Behavior of Ground Anchor Based on the Field Monitoring Load Data Analysis (현장 하중계 계측자료 분석을 통한 그라운드 앵커의 장기거동 예측)

  • Park, Seong-yeol;Hwang, Bumsik;Lee, Sangrae;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.25-35
    • /
    • 2021
  • Recently, the ground anchor method is commonly applied with nail and rock bolt to secure the stability of slopes and structures in Korea. Among them, permanent anchor which is used for long-term stability should secure bearing capacity and durability during the period of use. However, according to recent studies, phenomenon such as deformation to slope and the reduction of residual tensile load over time have been reported along the long-term behavior of the anchors. These problems of reducing residual tensile load are expected to increase in the future, which will inevitably lead to problems such as increasing maintenance costs. In this study, we identified the factors that affect the tensile load of permanent anchor from a literature study on the domestic and foreign, and investigated the prior studies that analyzed previously conducted load cell monitoring data. Afterwards, using this as basic data, the load cell measurement data collected at the actual site were analyzed to identify the tensile load reduction status of anchors, and the long-term load reduction characteristics were analyzed. Finally, by aggregating the preceding results, proposed a technique to predict the long-term load reduction characteristics of permanent anchors through short-term data to around 100 days after installation.

Application for Environment-friendly Retaining Wall Method Composed with Permanent Ground Anchor and Vertical Precast Panel in Cutting Slope Area (영구앵커와 연직 프리캐스트패널을 사용한 절토사면 친환경옹벽공법의 적용사례)

  • Nam, Hong-Ki;Jung, Hong-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.87-96
    • /
    • 2010
  • PAP method is a combined measures which consist a anchored retaining wall method with permanent ground anchors and vertical precast concrete panels, step by step on the slope surface. And soil is back filled between slope and vertical precast panels. Therefore, this method is more effective than any other ground anchor reinforcing methods of slope stability, for example cross type concrete block ground anchor or buttress concrete block ground anchor method. Because of increasing effective anchor force and green tree planting.

  • PDF

A Case study and Analysis on the Up-Lift Pressure Treatment Evaluation of Underground Installations for their Efficient Adoption (사례분석을 통한 효율적 상향수압(Up-Lift Pressure) 처리공법 적용방안에 관한연구 - ◯◯ 상업지역 현장사례 중심으로 -)

  • Ko, Ok-Yeol;Kwon, Oh-Chul;Shim, Jae-Kwang;Park, Tae-Eun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.119-129
    • /
    • 2009
  • Building construction trends have been changed dramatically in terms of size and mass. With the need to maximize land usage, there has been an increase in the construction of high-rise buildings. This affects not only the entire construction duration and cost, but also subsequent construction activities, such as work to increase underground facilities and in reclamation land area construction. These types of site conditions require soft ground reinforcement and the proper uplift water pressure treatment. In general, two kinds of methods have been used for uplift water pressure treatment systems. However, there have been some problems arising as the result of a lack of research and analysis on underground construction techniques, and a reliance on experiments over actual survey and analysis of site conditions. This paper focused on the problems of conventional selection procedure, by analyzing drawings and proposing a kind of modeling for a reasonable procedure. The results were applied to OO project as a sample construction case to be verified in this research. The initial plan in the case project was the Rock Anchor System. However, as there were terrible miscalculations of basic site conditions that had an extraordinary influence on the underground water level, such as the site's proximity to the Han-river, it was necessary to change the plan to include apermanent drainage system. This achieved a direct construction cost reduction \ 406,702,000 and a maximum sayings of 4% of operational cost, based on the 50-year building Life Cycle Cost.