• Title/Summary/Keyword: 영구배수공법

Search Result 7, Processing Time 0.04 seconds

An Analysis iff the Mutural Relation between Sinkhole and 'Permanent under Draingage System' as A Measure of Non Floating (씽크홀(SINKHOLE)과 부력방지 대책인 '영구배수 공법'과의 상관관계)

  • Kwon, Hoi ku
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.257-259
    • /
    • 2017
  • 최근에 국내에서 입법된 "지하안전관리에 관한 특별법"의 지하안전영향평가 등에서 지하매설물 및 굴착공사 관리의 중요성을 강조하고 있지만, 아직까지는 지하를 개발함에 있어 지반의 안전과 관련된 사항은 미흡한 실정으로 도심지 지반침하( Sinkhole) 현상이 매년 증가하고 있다. 그리고 지반침하(Sinkhole)는 발생이 될 경우 인명피해는 물론 도로나 주변 건물들에 막대한 피해를 줄 수 있는 소지가 충분한 대상으로 사료됨에도 불구하고 이러한 현상을 건설현장에서 심각하게 받아들이는 분위기는 어느 곳에서도 감지되지 않는다. 다만 정부부처나 공공기관에서 국회차원의 지대한 관심에 부응하여 이에 대해 광범위한 연구와 조사에 막대한 예산을 투입하여 다방면에서 진행되고 있는 것으로 파악되고 있다. 또한 이러한 연구결과의 자료를 근거로 하여 지반침하 사고의 주요 원인을 조사해본 결과 상하수도관 손상과 무리한 인접굴착공사 및 대부분의 대형건축공사 현장에 채택되고 있는 부력방지 대책의 일환인 영구배수공법의 무분별한 적용을 들 수 있었다. 이러한 상황에서 그 중 비용과 난이도를 고려현장에서 용이하게 저감할 수 있는 방법인 영구배수공법을 선정하여 영구배수공법의 이론적 고찰과 공학적 타당성(구조체 부상방지 안전성 검토기준)을 연구하여 무분별한 영구배수공법 적용으로 지반침하(Sinkhole)가 발생하는 것을 막아 인명피해와 도로나 구조물의 안전성을 확보하고 나아가 영구배수공법 적용으로 항구적 발생하는 천문학적인 유지관리비의 절감이 목적이다.

  • PDF

Applicability examinations of induced drainage system for reduction of uplift pressure in underpass structures: Numerical study (지하차도 부력저감을 위한 유도배수공법의 적용성 검토: 수치해석적 연구)

  • Jo, Seon-Ah;Jin, Gyu-Nam;Sim, Young-Jong;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.123-134
    • /
    • 2013
  • Urban underground structures at low ground elevations (i.e. shallow substructures) unlike typical tunnel structures are subjected to low overburden and high water pressures. This often causes the underground structures to become damaged. Various conventional methods for the urban underpass structures such as dead weight increasement, round anchors, and tension piles, are significantly conservative and provok concerns about the costly, time-consuming installation process. Recently, permanent drainage system becomes to widely use for supplementing the conventional method's shortcomings, but, it is applied without the considerations for ground conditions and water table. In this study, therefore, numerical analyses are performed with various parameters such as groundwater level, wall height, and ground conditions in order to establish design guidelines for induced drainage system which is a kind of the permanent drainage method constructed at the Y-area. According to the numerical results, the induced drainage system is very effective in reducing the uplift pressure that acts on the base of underpass structures.

A Study on the Evaluation Process Development for the Use of Outflowing Groundwater in Large-Scale Buildings (대형건축물의 유출지하수 활용을 위한 평가 프로세스구축에 관한 연구)

  • Kim, Jae-Yeob;Lee, Dong-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.91-97
    • /
    • 2010
  • Recently, as a countermeasure to the buoyancy of a building, the use of permanent drainage methods have been on the increase, and these provide benefits both in terms of economical feasibility and efficiency. When a permanent drainage method is applied, some underground water can drain out. Korea has been designated by PAI (Population Action International) as a water-stressed country, and the use of outflowing groundwater is required for the efficient oversight of water resources. However, the evaluation process on the practical use of underground water is currently insufficient. Therefore, the amount of outflowing groundwater put to practical use and the standard for the water quality were examined in this research, with the aim of establishing anappraisal process on the practical use of underground water drainage. In addition, standards for the assessment of the treatment process and the application cost of underground water drainage were developed. On this basis, an evaluation process on the use of outflowing groundwater was developed and applied inthe field. The application result proved that it was possible to assess the initial investment cost and the maintenance and management cost in the field, and thesecan be compared to the costs when supplied water is used, which makes it possible to apply in the field.

The Control Method of Scale in Drainage Pipe of Deteriorated Tunnel used Magnetic Field and Quantum Stick (자화장치와 퀀텀스틱을 이용한 노후터널의 배수공내 침전물 방지 방법)

  • Nam, Joongwoo;Lee, Changgi;Lee, Jonghwi;Do, Jongnam;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.59-64
    • /
    • 2011
  • Clogging in drainage pipe is one of the important problems, so it needs a remedy urgently. Recently, scale in drainage pipe is removed by water jet cleaning and other treatment. But these treatments need much cost and regular management. The principal component of scale in drainage pipe is $CaCO_{3}$. It was observed the setting of $CaCO_{3}$ by some kind of analysis such as SEM, XRD, visual and weight measuring analysis to solve these problems and prevent setting formation in drainage pipe. As a result, in case of magnetic, particle shape of $CaCO_{3}$ is changed Aragonite from Calcite. Also in case of Quantum Stick, the amount of scale is reduced by expert inspector's result. As a whole, Magnetic treatment and Quantum Stick have the effect for protecting of scale precipitation.

A Case study and Analysis on the Up-Lift Pressure Treatment Evaluation of Underground Installations for their Efficient Adoption (사례분석을 통한 효율적 상향수압(Up-Lift Pressure) 처리공법 적용방안에 관한연구 - ◯◯ 상업지역 현장사례 중심으로 -)

  • Ko, Ok-Yeol;Kwon, Oh-Chul;Shim, Jae-Kwang;Park, Tae-Eun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.119-129
    • /
    • 2009
  • Building construction trends have been changed dramatically in terms of size and mass. With the need to maximize land usage, there has been an increase in the construction of high-rise buildings. This affects not only the entire construction duration and cost, but also subsequent construction activities, such as work to increase underground facilities and in reclamation land area construction. These types of site conditions require soft ground reinforcement and the proper uplift water pressure treatment. In general, two kinds of methods have been used for uplift water pressure treatment systems. However, there have been some problems arising as the result of a lack of research and analysis on underground construction techniques, and a reliance on experiments over actual survey and analysis of site conditions. This paper focused on the problems of conventional selection procedure, by analyzing drawings and proposing a kind of modeling for a reasonable procedure. The results were applied to OO project as a sample construction case to be verified in this research. The initial plan in the case project was the Rock Anchor System. However, as there were terrible miscalculations of basic site conditions that had an extraordinary influence on the underground water level, such as the site's proximity to the Han-river, it was necessary to change the plan to include apermanent drainage system. This achieved a direct construction cost reduction \ 406,702,000 and a maximum sayings of 4% of operational cost, based on the 50-year building Life Cycle Cost.