• Title/Summary/Keyword: 엽생장

Search Result 738, Processing Time 0.049 seconds

Comparison of the Plant Characteristics and Nutritional Components between GM and Non-GM Chinese Cabbages Grown in the Central and Northern Parts of Korea (중·북부지역에서 재배된 GM 배추와 Non-GM 배추간의 식물체 특성 및 영양 성분 비교 분석)

  • Cho, Dong-Wook;Oh, Jin-Pyo;Park, Kuen-Woo;Lee, Dong-Jin;Chung, Kyu-Hwan
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.836-844
    • /
    • 2010
  • This study was carried out to investigate plant characteristics and nutritional components of the genetically modified (GM) Chinese cabbage and its control line grown in the central and northern parts of Korea in order to establish the evaluating protocol and standard assessment. The GM and non-GM Chinese cabbage was planted with normal and concentrated density at two locations in spring and fall of 2008 and 2009. From the statistic analysis on plant characteristics and nutritional components, there were not many significant differences between GM and non-GM Chinese cabbage. Only few differences in the plant characteristics were found between the dense and normal planting. In the dense planting, there was no significant difference between GM and non-GM Chinese cabbages except for three out of 18 plant traits, such as leaf shape, hairiness and midrib length. On the other hand, nine plant traits including leaf length, leaf width, leaf color, leaf shape, fresh weigh of ground part, number of leaf, midrib length, midrib width and root diameter were slightly different between GM and non-GM Chinese cabbage in the normal planting. In case of leaf length, midrib length, midrib width and fresh weigh of ground part, there were significantly differences not only between two lines, but also between two locations. From nutritional component analysis, only five fatty acids were identified in the Chinese cabbage: palmitic acid, oleic acid, stearic acid, linoleic acid and linolenic acid. Except linoleic acid, four fatty acids in one gram of dried sample from GM line were little higher than those from non-GM line. However, there were no significant differences in total contents of fatty acids not only between GM and non-GM Chinese cabbage line, but also between northern and central cultivating areas in the normal and dense planting. According to the composition of inorganic elements identified in the samples from both lines, there were six macro-elements, such as N, P, Ca, K, Mg and Na, and four micro-elements, Cu, Fe, Mn and Zn. Based on the result from PCA analysis, specific clusters were not found between GM Chinese cabbage and the control line, but found between two regions.

Studies on Artificial Polyploid Forest Trees XIII -Some Morphological and Physiological Characteristics of Colchitetraploid Hibiscus syriacus L.- (인위배수성(人爲倍數性) 임목(林木)에 관(關)한 연구(硏究) XIII -Colchitetraploid인 자주무궁화와 단심무궁화의 몇 형태학적(形態學的) 및 생리학적(生理學的) 특성(特性)-)

  • Lee, Suk Koo;Kim, Chung Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.73-86
    • /
    • 1976
  • Two individuals ($sp_1$, $sp_2$) of purple and one individual ($sd_1$) of red hearted flower were selected from 18 years old Hibiscus syriacus trees obtained from the seeds treated with colchicine, and their morphological and physiological characteristics were investigated and following results were obtained. 1. The somatic chromosome number of the selected individuals, $sp_1$, $sp_2$, and $sd_1$ were 2n=160, while that of the check tree was 2n=80, indicating that the selected individuals, $sp_1$, $sp_2$ and $sd_1$ were tetraploid. 2. Peroxidase isoenzyme bands of high activity in selected individuals, $sp_1$, $sd_1$ and check tree were mostly in cathode, fixed band was f and v bands, and frequency of each band and their activity were not different between selected individuals, $sp_1$ and $sd_1$ and check tree. 3. The flowers of $sp_1$ individual were large in size and more dark purple than check tree's. The flowers of $sp_2$ individual were not increased in size, but they were dark purple and red heart at the base of the petal was expanded to 2/3 of the petal length. The flower of $sd_1$ individual was also large and some of the red lines from the petal base were extended to 2/3 of the petal length, which was much longer than those of the check tree. 4. Thickess of leaves, length of guard cells, diameter of pollens, wood fiber lengths and woody fiber widths were all increased in $sp_1$, $sp_2$ and $sd_1$ as compared to those of the check tree. 5. Survival percentage of cuttings was 80% with $sp_1$ and 36% with $sd_1$, and their growth performance were inferior to control in their second growing season.

  • PDF

Effect of Shading Levels on the Soil Properties, Growth Characteristics, and Chlorophyll Contents of Ligularia stenocephala (차광정도가 곤달비의 토양변화, 생육상황 및 엽록소 함량에 미치는 영향)

  • Park, Byoung-Mo;Kim, Chang-Hwan;Bae, Jong-Hyang;Shin, Jung-Ryeul
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.352-356
    • /
    • 2011
  • It is true that the industrial development has usually been accompanied with urbanization or centralization of population that has inevitably led to high-rise buildings and densely built-up living area in the cities. While it is badly needed to acquire as much green land within the city limits as possible to compensate for reduced space for recreational purpose in parallel with increasingly urbanized area, the living conditions of plants have become seriously devastated due to shortage of sun light walled-off by high-rise buildings and contaminated environment and air. The shade that is generated by high-rise and compact buildings hinders growth of plants, which makes it urgent to develop native ground cover plant that is strongly viable in the shade. For this purpose, Ligularia stenocephala, best known as greens for Ssam (rice and condiments wrapped in leaves) was cultivated under the 30%, 50%, and 80% shadings and observed to see if there would be any changes in soil conditions, growth of plants and chlorophyll contents depending on the shading rate. The leaf number was 10.8 pieces under the 50% shading and 8.4 under the 30%-shading, 7.7 pieces more than that cultivated under lighting. The leaf width turned out to be excellent from cultivation under the 50%- shading, an evidence indicating its possibility of being cultivated as native ground cover plant in the shade. The live weight of the plants cultivated under the shading increased to 31.63 g, 43.39 g and 19.40 g, respectively, compared to 90.43 g of those in the untreated control plot. The increase in growth of roots was particularly significant with 48.48 g in comparison to 12.33 g under 30% shading cultivation. The chlorophyll synthesis amounted to 46.2 under the 50% shading, showing an increase compared to 41.9 under lighting. The chlorophyll synthesis rather shrank under other shading conditions. The cultivation of Ligularia stenocephala under the 50% shading showed the best condition in growth as native ground cover plant.

Photosynthetic and Growth Responses of Chinese Cabbage to Rising Atmospheric CO2 (대기 중 CO2 농도의 상승에 대한 배추의 광합성과 생장 반응)

  • Oh, Soonja;Son, In-Chang;Wi, Seung Hwan;Song, Eun Young;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • The effects of elevated atmospheric $CO_2$ on photosynthesis and growth of Chinese cabbage (Brassica campestris subsp. napus var. pekinensis) were investigated to predict productivity in highland cropping in an environment where $CO_2$ levels are increasing. Vegetative growth, based on fresh weight of the aerial part, and leaf characteristics (number, area, length, and width) of Chinese cabbage grown for 5 weeks, increased significantly under elevated $CO_2$ ($800{\mu}mol{\cdot}mol^{-1}$) compared to ambient $CO_2$ ($400{\mu}mol{\cdot}mol^{-1}$). The photosynthetic rate (A), stomatal conductance ($g_s$), and water use efficiency (WUE) increased, although the transpiration rate (E) decreased, under elevated atmospheric $CO_2$. The photosynthetic light-response parameters, the maximum photosynthetic rate ($A_{max}$) and apparent quantum yield (${\varphi}$), were higher at elevated $CO_2$ than at ambient $CO_2$, while the light compensation point ($Q_{comp}$) was lower at elevated $CO_2$. In particular, the maximum photosynthetic rate ($A_{max}$) was higher at elevated $CO_2$ by 2.2-fold than at ambient $CO_2$. However, the photosynthetic $CO_2$-response parameters such as light respiration rate ($R_p$), maximum Rubisco carboxylation efficiency ($V_{cmax}$), and $CO_2$ compensation point (CCP) were less responsive to elevated $CO_2$ relative to the light-response parameters. The photochemical efficiency parameters ($F_v/F_m$, $F_v/F_o$) of PSII were not significantly affected by elevated $CO_2$, suggesting that elevated atmospheric $CO_2$ will not reduce the photosynthetic efficiency of Chinese cabbage in highland cropping. The optimal temperature for photosynthesis shifted significantly by about $2^{\circ}C$ under elevated $CO_2$. Above the optimal temperature, the photosynthetic rate (A) decreased and the dark respiration rate ($R_d$) increased as the temperature increased. These findings indicate that future increases in $CO_2$ will favor the growth of Chinese cabbage on highland cropping, and its productivity will increase due to the increase in photosynthetic affinity for light rather than $CO_2$.

Plant Regeneration of Bupleurum spp. through Somatic Tissue Culture (자호(紫胡)의 체세포조직배양(體細胞組織培養)에 의한 식물체재분화(植物體再分化))

  • Park, Cheol-Ho;Yu, Chang-Yeon;Kim, Dong-Wook;Cho, Hye-Kyeong;Park, Kyeong-Suk;Seo, Jeong-Sik;Ahn, Sang-Deuk;Jang, Byeong-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.2 no.1
    • /
    • pp.60-66
    • /
    • 1994
  • This study was conducted to determine the optimum conditions of inducing callus, proliferating callus, forming somatic embryos, and regenerating plantlets via somatic embryogenesis, for the purpose of producing artificial seeds and substantially developing plant factory technologies that can be employed to all seasons production of Bupleurum plants. Callus was efficiently induced from leaf tissues at three leaf stage in the MS medium supplemented with 2, 4-D 2mg /1 and thidiazuron(TDZ) 0.lmg /1. Callus induction from leaf tissues at maturity was mostly effective in the mixture of 2,4- D 2mg /1 and TDZ 1.0mg /1 while that from flower bud tissues was fairly good in the MS medium containing 2,4-D 1 or 2mg /1.Callus was formed in 15 to 20 days after culture initiation in the MS media supplemented with 2, 4- D 1-2mg /1 and TDZ 0.l-1.0mg /1. Such hormones as kinetin 3mg /1, GA 1mg /1, and the mixture of GA 1mg /1 and TDZ 1mg /1 effected markedly to proliferate the callus cells.The optimum temperature and light intensity for callus culture were found to be $25^{\circ}C$ and 3000 Lux, respectively. Direct plant regeneration from cultured callus was fairly made on hormone-free MS or half-strength MS medium. Somatic embryogenesis was most frequently observed in hormone-free media:60 somatic embryos per 20ml in MS medium and 28 somatic embryos per 20ml in half -strength MS medium. There were three stages-globular, heart, and torpedo-in development of somatic embryos, among which globular stage was more frequently observed in MS medium rather than in half-strength MS medium. Somatic embryos induced from suspension culture fairly differentiated a number of shoots and roots on hormone-free and half-strength MS solid medium.

  • PDF

Growing Density and Cavity Volume of Container Influence Major Temperate Broad-leaved Tree Species of Physiological Characteristics in Nursery Stage (용기의 생육밀도와 용적에 따른 온대 주요 활엽수의 생리 특성 변화)

  • Cho, Min Seok;Jeong, Jaeyeob;Yang, A-Ram
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.40-53
    • /
    • 2017
  • The purpose of this study was to evaluate the effects of container types on physiological characteristics of Zelkova serrata, Fraxinus rhynchophylla and Quercus serrata in the container nursery stage. We used 16 container types [4 growing densities (100, 144, 196 and $256\;seedlings/m^2$)${\times}4$ cavity volumes (460, 380, 300 and $220cm^3/cavity$)] and performed two-way ANOVA to test the differences in photosynthesis, photochemical efficiency and chlorophyll content among container types. Also, multiple regression analysis was conducted to correlate container dimensions with photosynthetic rate. Container types had a strong influence on photosynthesis of three species seedlings. Growing densities and cavity volumes had a significant interaction effect on photosynthetic rate, water use efficiency, stomatal conductance and chlorophyll contents except stomatal conductance of Q. serrata. In all three species, however, interactions between the two factors of container type were not found with regard to photochemical efficiency. Growing density was negatively correlated with photosynthetic rate of F rhynchophylla and Q. serrata, while cavity volumes positively affected on those of three species seedlings. The range of optimal container types was determined by multiple regression analysis based on photosynthetic rate. Consequently, optimal growing density and cavity volume of container by each tree species were found to be approximately $160{\sim}210\;seedlings/m^2$ and $430{\sim}460cm^3/cavity$ for Z. serrata, $130{\sim}150\;seedlings/m^2$ and $390{\sim}440cm^3/cavity$ for F. rhynchophylla and $130{\sim}170\;seedlings/m2$ and $420{\sim}460cm^3/cavity$ for Q. serrata, respectively. Application of adequate container will induce higher quality seedling production in nursery stage, which will also increase seedling growth in plantation stage.

Early Growth of Sweet Pepper by Difference between Day and Night Temperature after Planting (정식 후 주야간온도차에 따른 착색단고추의 초기 생육)

  • Kim, Ho Cheol;Ku, Yang-Gyu;Lee, Yong Beom;Lee, Jeong Hyun;Choi, Joon Ho;Bae, Jong Hyang
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.552-557
    • /
    • 2013
  • This study was carried out to investigate the different DIF (day/night temperature differential) treatments on early growth of sweet pepper plants (Capsicum annuum L.) after planting. The DIF treatments were thus as follows. DIF levels are DIF-6 ($20-26^{\circ}C$) and DIF 0 ($23^{\circ}C$), DIF 3 ($24.5-21.5^{\circ}C$) and DIF 6 ($26-20^{\circ}C$). The DIF 3 and DIF 6 treatments significantly increased plant height of the sweet pepper plants during ten weeks after planting compared to DIF-6 and DIF 0. Leaf area per plant of DIF 3 treatment constantly increased and the level was greatest leaf area at ten weeks after planting. Fresh weight per plant treated with DIF-6 was lower and was reduced 74-77% range compared to other treatments. DIF 0 and DIF 3 treatments significantly affected dry weight and percentage of dry matter compared to DIF-6 and DIF 6. Especially DIF 6 treatment significantly decreased from eight weeks after planting. Percentage of dry matter of the leaf treated with DIF 0 and DIF 3 consistently increased from six weeks after planting, however, DIF-6 and DIF 6 treatments dramatically decreased from eight weeks after planting. High levels of DIF management cause growth retardant on early growth of sweet pepper plants, especially when night temperature is higher than day temperature, plants are indicated to be greater growth retardant.

Studies on Growth Enviromental and Inorganic Components of Korean Native Tea Plants(Camellia sinensis O. kuntze) (한국(韓國) 자생차(自生茶)의 생육지 토양과 엽중 무기성분 함량)

  • Park, Jang-Hyun;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 1998
  • To characterize the growth environment, inorganic composition and morphological chracteristics of leaves of Korean tea plant, soil and tea leaf samples were collected from 15 locations and analyzed. The chemical characteristics of soils were in range of pH 4.09~6.15, OM 23.9~72.6g/kg, available phosphate less than 300mg/kg, K $0.8{\sim}2.5cmol^+/kg$, Na $tr{\sim}0.17cmol^+/kg$, Ca $1.0{\sim}6.2cmol^+/kg$, and Mg $0.3{\sim}2.1cmol^+/kg$. The contents of Ni. Cr, Zn. Cu, Pb, and Cd were at the level less than natural content in upland soil. Most of the sample soils were sandy loamy and loamy texture. The native tea plants were mainly grown in bamboo thicket or in forest. The leaf sizes of tea plants were $6.85{\pm}1.75{\times}2.6{\pm}0.5cm$, lateral vein number $14.2{\pm}2.7$, and crenated number $58.5{\pm}11.2$, and the leaf color was thin to dark green. The contents of $NH_4{^+}$, $Na^+$, $K^+$, $Mg^{2+}$ and $Ca^{2+}$ in tea leaves were in range of 30.5~47.7, 45.5~164.5, 16,998~25,431, 1.590~2,392 and 1,085~1,958mg/kg, respectively. The contents of $F^-$, $Cl^-$, $NO_3{^-}$, $PO_4{^{3-}}$ and $SO_4{^{2-}}$ were in range of 21.2~63.2, 126.4~257.9, 108.5~185.9, 1,270~1.819, and $954{\sim}1,670mg/kg$, respectively. The leaf size of native tea plant grown widlly in Shunchun Changchun-ri, Hwasun Ssangbongsa, Kuryoi Chonunsa, Bosong Daewonsa and Namhae Boriam was as large as those of Yabukita. Japan cultiver, grown at Kangjin Jangwon tea field.

  • PDF

Effect of Cooling in a Semi-closed Greenhouse at High Temperature on the Growth and Photosynthesis Characteristics in Paprika (고온기 반밀폐형온실 냉방이 파프리카 생육과 광합성 특성에 미치는 영향)

  • Kim, Eun Ji;Park, Kyoung Sub;Goo, Hei Woong;Park, Ga Eun;Myung, Dong Ju;Jeon, Yong Hwan;Na, Haeyeong
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.335-341
    • /
    • 2021
  • In this study, experiments were conducted to investigate the effects of high- temperature stress on paprika in a semi-closed greenhouse where cooling is available and a normal plastic greenhouse. Paprika grown in a semi-closed greenhouse in which geothermal cooling is provided showed a significantly higher speed of photosynthesis than paprika grown in a 3-layer plastic greenhouse in which there is no cooling system. It suggests that the photosynthesis speed of paprika in a plastic house decreases owing to high temperature stress. Plant height increased by 13cm more in the semi-closed greenhouse, and the size of leaf showed similar growth speed until the 2nd week after transplanting, however, after 3 weeks, the semi-closed greenhouse showed a big difference by 47% compared with the plastic greenhouse. In terms of the fruit count, the semi-closed greenhouse had 10.6 fruits/plant and the plastic greenhouse had 4.6 fruits/plant, indicating that the semi-closed greenhouse had a higher number of fruits by 130% than the plastic greenhouse. The fruit weight also presented a difference between the semi-closed greenhouse and the plastic greenhouse by 46%, which is 566.7g/plant and 387g/plant, respectively. According to the above mentioned results, it was validated that when paprika is cultivated in a semi-closed greenhouse where a cooling system is applied, photosynthesis and growth were better than in the normal plastic greenhouse. Thus, if the hot summer season is overcome by applying the elemental technologies for the cooling system to the normal plastic greenhouse, farm income may increase through improvement in the yield and quality.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.