• Title/Summary/Keyword: 염화물이온 침투 깊이

Search Result 32, Processing Time 0.024 seconds

A Comparative Study of Sulfate and Chloride Intrusion in Mortar Sections: An Approach Using Laser Induced Breakdown Spectroscopy and Ion Exchange Membrane (LIBS와 이온교환막을 활용한 모르타르 단면 침투 황산염과 염화물 분석)

  • Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.221-229
    • /
    • 2023
  • This research aimed to conduct an empirical assessment of the penetration of chloride and sulfate ions into mortar sections using an anion exchange membrane(AEM) and laser-induced breakdown spectroscopy(LIBS). The study involved a simultaneous ion chromatography(IC) analysis and LIBS analysis performed on mortars immersed in varying concentrations of chloride and sulfate. The findings revealed that at the wavelengths specific to Chloride(837.59nm) and Sulfur(921.30nm), the LIBS intensity achieved using AEM surpassed that obtained with a paper substrate at equivalent penetration concentrations. A robust correlation was confirmed between LIBS intensity and chloride ion concentration. Furthermore, when juxtaposed with IC analysis concentration outcomes at identical depths, the AEM displayed a higher intensity. The research noted an enhancement in LIBS intensity and a diminution in errors within the low-concentration section when deploying AEM. However, for the Sulfur wavelength of 921.3nm, there remains a need to augment the sensitivity of the LIBS signal within the low-concentration section in future studies. The findings underscore the potential of employing AEM and LIBS for precise analysis of chloride and sulfate ion penetration into mortar sections. This strategy can aid in bolstering assessment precision and mitigating errors, particularly in regions with low concentrations. It is recommended to further research and develop methods to amplify the sensitivity of the LIBS signal for sulfur detection in low-concentration sections. In sum, the study accentuates the significance of employing advanced techniques like AEM and LIBS for efficacious and precise analysis in the domain of mortar section assessment.

A Study on Chloride Attack Resistibility of Quaternary Concrete (4성분계 콘크리트의 염해 저항성능에 관한 연구)

  • Lee, Dong-Un;Park, Hyun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1188-1194
    • /
    • 2014
  • The purpose of this study is to estimate Chloride Attack Resistibility and mechanical properties of quaternary concrete adding fly ash, blast-furnace slag, and silica fume. Compressive strength, modulus of elasticity, chloride migration coefficient, charge passed from Rapid chloride penetration test(RCPT), and immersion testing in 3% NaCl are tested. Chloride migration coefficient and charge passed of quaternary concrete measured $0.032{\times}10^{-12}m^2/sec$ and 650 coulomb at 17 weeks, which are in a permitted limit. Also in immersion test, depth of chloride penetration and maximum chloride ion of quaternary concrete measured 3.7 mm and $10.211kg/m^3$ respectively. From the results, quaternary concrete adding fly ash, blast-furnace slag, and silica fume denotes improvement of mechanical properties and chloride attack resistibility.

An Experimental Study on Chloride Ions Penetration of Mortar containing Si/Al Hybrid-Inorganic Salt (Si/Al 복합 무기염을 적용한 모르타르의 염소이온침투깊이에 대한 실험적 연구)

  • Khil, Bae-Su;Kim, Do-Su;Kang, Yong-Sik;Kim, Woo-Jae;Choi, Se-Jin;Kim, Sung-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.417-418
    • /
    • 2009
  • As iron corrosion by means of penetration of chlorides resulted in a serious deterioration of seaside and landfill concrete construction, it is urgently necessary for seaside construction to acquire watertightness and resistance for chloride-attack. Hence in this study, Si/Al liquor type hybrid-inorganic salt which was very effective compound for improving resistance for chloride-attack applied to mortar and then evaluated resistance for chloride-attack with curing(7, 14, 28, 56 days).

  • PDF

Durability of Ultrarapid-Hardening Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 초속경 폴리머 시멘트 모르타르의 내구성)

  • 이윤수;주명기;연규석;정인수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.660-667
    • /
    • 2002
  • The effects of polymer-cement ratio and antifoamer content on the durability of ultrarapid-hardening polymer-modified mortars using redispersible polymer powder are examined. As a result, regardless of the antifoamer content, the setting time of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder tend to delay with increasing polymer-cement ratio. The water absorption and chloride ion penetration depth of the ultrarapid-hardening polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

Performance Evaluation of Repair Material and Method for Reinforced Concrete Structure by Long Term Exposure Experiment (장기폭로실험에 의한 철근콘크리트 구조물의 보수재료.공법 성능평가)

  • Kim, Moo-Han;Kim, Gyu-Yong;Cho, Bong-Suk;Kim, Young-Duck;Kim, Young-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2007
  • In this study, for the establishment of the performance evaluation methods and the quality control standards of durability recovery method, the quantitative exposure data by long term exposure test under the coast and normal atmosphere is accumulated and analyzed. Investigating and evaluating the result of exposure test during 30 months of exposure age under the coastal and normal atmosphere environment, carbonation depth and chloride-ion penetration depth very little penetrated than cover depth. It seems reasonable to conclude that main cause of Corrosion of reinforcing bar are chloride-ion and macro cell from the result of corrosion area and corrosion velocity. Therefore, it is considered to be applied as the fundamental data on the performance evaluation and quality control standards of repair material and method through continuous exposure test in the future.

Experimental Study for Evaluation of Chloride Ion Diffusion Characteristics of Concrete Mix for Nuclear Power Plant Water Distribution Structures (원전 취배수 구조물 콘크리트 배합의 염소이온 확산특성 평가를 위한 실험적 연구)

  • Lee, Ho-Jae;Seo, Eun-A
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.112-118
    • /
    • 2022
  • In this study, the diffusion characteristics were evaluated using the concrete mix design of nuclear safety-related structures. Among the concrete structures related to nuclear power safety, we selected the composition of intake and drainage structures that are immersed in seawater or located on the tidal platform and evaluated the chloride ion permeation resistance by compressive strength and electrical conductivity and the diffusion characteristics by immersion in salt water. analyzed. Compressive strength was measured on the 1st, 7th, 14th, 28th, 56th, and 91st days until the 91st day, which is the design standard strength of the nuclear power plant concrete structure, and chloride ion permeation resistance was evaluated on the 28th and 91st. After immersing the 28-day concrete specimens in salt water for 28 days, the diffusion coefficient was derived by collecting samples at different depths and analyzing the amount of chloride. As a result, it was found that after 28 days, the long-term strength enhancement effect of the nuclear power plant concrete mix with 20% fly ash replacement was higher than that of concrete using 100% ordinary Portland cement. It was also found that the nuclear power plant concrete mix has higher chloride ion permeation resistance, lower diffusion coefficient, and higher resistance to salt damage than the concrete mix using 100% ordinary Portland cement.

Influence of Carbonation on the Chloride Diffusion in Concrete (탄산화 현상이 콘크리트 중의 염소이온 확산에 미치는 영향 연구)

  • Oh, Byung-Hwan;Lee, Sung-Kyu;Lee, Myung-Kue;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.829-839
    • /
    • 2003
  • Recently, the corrosion of reinforced concrete structures has received great attention related with the deterioration of sea-side structures, such as new airport, bridges, and nuclear power plants. In this regards, many studies have been done on the chloride attack in concrete structures. However, those studies were confined mostly to the single deterioration due to chloride only, although actual environment is rather of combined type. The purpose of the present study is, therefore, to explore the influences of carbonation to chloride attack in concrete structures. The test results indicate that the chloride penetration is more pronounced than the case of single chloride attack when the carbonation process is combined with the chloride attack. It is supposed that the chloride ion concentration of carbonation region is higher than the sound region because of the separation of fixed salts. Though the use of fly ash pronounces the chloride ion concentration in surface, amounts of chloride ion penetration into deep region decreases with the use of fly ash. The present study allows more realistic assessment of durability for such concrete structures which are subjected to combined attacks of both chlorides and carbonation but the future studies for combined environment will assure the precise assessment.

An Experimental Study on the Fundamental Properties and Durability of Sewer Type Restorative Mortar Spread with Antibiotics (항균제를 도포한 하수시설용 단면복구 모르타르의 기초물성 및 내구특성에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Gyu-Yong;Kim, Jae-Hwan;Cho, Bong-Suk;Lee, Dong-Heck
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.195-202
    • /
    • 2006
  • Deterioration of sewer concrete is representative that biochemical corrosion according to the $H_2S$ has growth by inhabit sulfur-oxidzing bacteria because of special environment in sewer. But in case of domestic, fundamentally, sulfur-oxidzing bacteria could moderate development of repair material method is need because of corrosion prevent method is inconsideration with carry out to improve project. In this paper, after development of spread type antibiotic with antibio-metal, antibacterial performance about sulfur-oxidzing bacteria of antibiotic and tested to estimate fundamental properties of bonding strength, abrasion contents, contents of water absorption, contents of air permeability, carbonation depth, chloride ion penetration depth and chemical resistance of spread with antibiotic restorative mortar.

Evaluation of Durability of Slag Concrete by Marine Environment Exposure (해양환경 폭로에 의한 슬래그 콘크리트의 내구성 평가)

  • Kim, Hyun-Jin;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Hong-Seop;Lee, Bo-Kyeong;Kim, Rae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.111-112
    • /
    • 2015
  • There is high possibility of steel corrosion on the reinforced concrete exposed to marine environment by chloride ion penetration. And it show a big difference of concrete durability under conditions of splash zone, tidal zone, and immersion zone. Therefore, in this paper, half-cell potential and chloride ion penetration depth was measured to evaluate the durability of slag concrete by marine exposure experiment. As a result, SC70 specimen showed no steel corrosion, regardless of the marine exposed conditions. Also, a deterrent effect on chloride ion penetration by replacement of slag in tidal zone and immersion zone could be confirmed.

  • PDF

Development on Antibiotic Concrete Mixed with Antibacterial Metals and Metallic Salts (금속 및 금속염계 항균제가 혼입된 항균 콘크리트 개발)

  • Choi, Hong-Shik;Heo, Kwon;Lee, Ho-Beom;Lee, Si-Woo;Kwak, Hong-Shin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • In the sewage structures and wastewater facilities, concrete is exposed to hydrogen sulfide ($H_2S$) which acts as an acid material in a solution, and a strongly acidic sulfate ion ($SO{_4}^{-2}$) is generated by a sulfuric bacteria. Hence, a degradation of concrete with biochemical corrosion would be accelerated. Finally, durability of concrete and concrete structures may be greatly reduced. In this study, in order to remove the hydrogen sulfide which is used by the sulfuric bacteria organic-biologically, the antibiotic metal and metallic salt powders were mixed to concrete, and a suppressing performance of the sulfate ion was assessed. For the sulfuric acid bacteria, a comparative evaluation of antimicrobial performance on neutralized concrete specimens were carried out, also by a rapid chloride penetration test, chloride penetration depths and diffusion coefficients were measured for antibiotic concrete in accordance with the amount of metal and metallic salt-based antibacterial agents. Eventually, by an observation of the biochemical state of the surface of concrete specimens exposed outdoors, the performance and applicability of antibiotic concrete were confirmed.