• Title/Summary/Keyword: 염화물이온 침투해석

Search Result 9, Processing Time 0.036 seconds

Analytical Study on the Chloride Ion's Permeation of Reinforced Concrete Repaired by Patching Repair Material (단면수복재로 보수시공한 철근콘크리트내로의 염화물이온 침투에관한 해석적 연구)

  • Yun, Sun-Young;Shin, Sang-Heon;Ryu, Byung-Cheol;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.617-620
    • /
    • 2008
  • When the RC structure repaired by patching repair method, which method refilles with patching repair material after removes degraded area, It is necessary to determine chloride ion's permeation from outside of the RC structure repaired by patching repair material. Therefore, in this study, damage from sea environment of structure was predicted, moreover, diffusion coefficient of concrete also determined to figure out rebar's corrosion and concentration of chloride ion. RCPT(Rapid Chloride Permeability Test) was used for ditermination of patching repair material's diffusion coefficient, also connection between material thickness and effect of chloride ion's permeation was examined in analytically. Results which derived by experimental test was used in FEM(Finite Element Method) and equation suggested by JSCE to predict concentration of chloride ion in different distance from surface.

  • PDF

A Study on Prediction Model of Chloride ion Permeation of Cement Mortar by Steel Powder (염해환경에서의 염화물이온 침투 예측에 관한 연구)

  • Kim, Jeong-Jin;Park, Soon-Jeon;Ko, Joo-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.513-516
    • /
    • 2008
  • In this study the prediction model of Chloride Ion progress rate of concrete using steel powder as an addition is developed, in which the reduction of not only the diffusion rate of $Cl^-$ but also the corrosion rate by replenishment of pore by corrosion products. The model is based on the diffusions of $Cl^-$ and its reaction with $Fe^{2+}$, in chloride attack progression region. The model can also explain the characteristics of chloride ion permeation resistance of concrete that the matrix is densified due to corrosion products. The prediction by the model agreed well the experimental data in which the concrete using steel powder, and it showed the lower rate in long-term age to Chloride Ion progress rate than the concrete without steel powder. Consequently the model can predict Chloride Ion progress rate of concrete exposed in the atmosphere regardless of the water-to-cement raito, the amount of the content of steel powder, etc.

  • PDF

The Analysis of Chloride Ions Intrusion into Concrete Structure (콘크리트 구조물의 염화물이온 침투거동 해석)

  • 김은겸;신치범;이윤한
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.233-241
    • /
    • 1997
  • 최근 해안환경하에 있는 콘크리트구조물의 철근부식은 구조물의 내구성 저하 및 유지관리라는 차원에서 커다란 문제점을 가지고 있다. 이와 같은 현상은 해양구조물의 건설이 날로 증가하고 있고, 또 콘크리트 제조시 잔골재의 일부를 염분이 함유된 해사를 사용함으로써 더욱 심각해지고 있다. 본 연구에서는 콘크리트 표면으로부터 침투해 들어오는 침입염분의 거동을 모델화하였으며, 콘크리트 세공속의 수용액상에 있은 염화물이온의 확산을 포함하는 물리 화학적 진행, 시멘트 수화물에 고정되는 염분의 흡착과 탈착 및 고정염과의 화학반응 등의 현상을 유한요소법에 의해 해석을 실시하였다. 본 연구의 결과는 콘크리트 내부의 철근 발청시기의 예측, 해안환경하에 있는 콘크리트 구조물의 침투 염분에 의한 콘크리트 덮개의 결정, 콘크리트 구조물의 염화물이온의 허용치 설정을 비롯하여 내구년수를 예측하는데 유용하게 활용될 수 있을 것으로 기대된다.

A Study on Resistance of Chloride Ion Penetration in Ground Granulated Blast-Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물 침투 저항성에 관한 연구)

  • Song, Ha-Won;Kwon, Seung-Jun;Lee, Suk-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • Chloride ion inside concrete destroys the so-called passive film surrounding reinforcing bars inside concrete so that the so-called salt attack accelerates corrosion which is the most critical factor for durability as well as structural safety of reinforced concrete structures. Recently, as a solution of the salt attack, the ground granulated blast-furnace slag(GGBFS) have been used as binder or blended cement more extensively. In this paper, characteristics of chloride ion diffusion for the GGBFS concrete, which is known to possess better resistance to damage due to the chloride ion penetration than ordinary portland cement(OPC) concrete possesses, are analyzed and a chloride ion diffusion model for the GGBFS concrete is proposed by modifying an existing diffusion model for the OPC concrete. The proposed model is verified by comparing diffusion analysis results using the model accelerated chloride penetration test results for concrete specimens as well as field test results for an RC bridge pier. Then, an optimal resistance condition to chloride penetration for the GGBFS concrete is obtained according to degrees of fineness and replacement ratios of the GGBFS concrete. The result shows that the GGBFS concrete has better resistance to chloride ion penetration than OPC concrete has and the resistance is more affected by the replacement ratio than the degree of fineness of the GGBFS.

Experimental Study on the Time-dependent Property of Chloride Diffusivity of Concrete (콘크리트의 염소이온 확산계수의 시간의존성에 대한 실험적 고찰)

  • Choi, Doo Sun;Choi, Jae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.365-371
    • /
    • 2009
  • It is time-consuming to estimate chloride diffusivity of concrete by concentration difference test. For the reason chloride diffusivity of concrete is mainly tested by electrically accelerated method, which is accelerating the movement of chloride ion by potential difference. In this study, portland cement concrete and concrete containing with ground granulated blast-furnace slag (40 and 60% of cement by weight) with water-cementitious material ratio 40, 45, 50 and 60% were manufactured. To compare with chloride diffusivity calculated from the electrically accelerated test and immersed test in artifical seawater, chloride diffusivity tests were conducted. From the results of regression analysis, regression equation between accelerated chloride diffusivity and immersed chloride diffusivity was linear function. And the determinant coefficient was 0.96 for linear equation.

The Estimation of Surface Chloride Content and Durability of the Marine Concrete Bridges in South Coast (남해안 해상 콘크리트 교량의 표면염화물이온농도 및 내구성 평가)

  • Jung, Dae-Jin;Choi, Ik-Chang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.730-737
    • /
    • 2014
  • In this study, chloride content of marine concrete bridge at the south coast in 5~34years was calculated based on the measured data and the validity of the proposed value was evaluated. Also, correlation of existence of salt injury prevention coating, chloride content, carbonation depth and the compressive strength of marine concrete bridges were derived and relationship of the four was evaluated. According to the research results, surface chloride content value in the tidal zone proposed form KCI 2009 and value in the splash zone and atmospheric zone proposed form Cheong et al.(2005) was the most valid. Also, salt injury prevention coating of marine concrete bridges had the outstanding effect of preventing chloride content penetration, carbonation depth and reduction in the compressive strength. Compressive strength of concrete was reduced by the increase of carbonation depth and chloride content.

Analysis Technique for Chloride Behavior Using Apparent Diffusion Coefficient of Chloride Ion from Neural Network Algorithm (신경망 이론을 이용한 염소이온 겉보기 확산계수 추정 및 이를 이용한 염화물 해석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.481-490
    • /
    • 2012
  • Evaluation of chloride penetration is very important, because induced chloride ion causes corrosion in embedded steel. Diffusion coefficient obtained from rapid chloride penetration test is currently used, however this method cannot provide a correct prediction of chloride content since it shows only ion migration velocity in electrical field. Apparent diffusion coefficient of chloride ion based on simple Fick's Law can provide a total chloride penetration magnitude to engineers. This study proposes an analysis technique to predict chloride penetration using apparent diffusion coefficient of chloride ion from neural network (NN) algorithm and time-dependent diffusion phenomena. For this work, thirty mix proportions with the related diffusion coefficients are studied. The components of mix proportions such as w/b ratio, unit content of cement, slag, fly ash, silica fume, and fine/coarse aggregate are selected as neurons, then learning for apparent diffusion coefficient is trained. Considering time-dependent diffusion coefficient based on Fick's Law, the technique for chloride penetration analysis is proposed. The applicability of the technique is verified through test results from short, long term submerged test, and field investigations. The proposed technique can be improved through NN learning-training based on the acquisition of various mix proportions and the related diffusion coefficients of chloride ion.

Remaining Service Life Prediction of Concrete Structures under Chloride-induced Loads (염해환경하의 콘크리트 구조물의 잔존수명 예측)

  • Song, Ha-Won;Luc, Dao Ngoc The
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1037-1040
    • /
    • 2008
  • In order to predict the remaining life of marine concrete structures under climatic loads, it is necessary to develop an analytical approach to predict the time and space dependent deterioration of concrete structures due to mainly chloride attack up to corrosion initiation and additional deterioration like cracking of cover concrete. This study aims to introduce FEM model for life-time simulation of concrete structures subjected to chloride attack. In order to consider uncertainties in materials as well as environmental parameters for the prediction, Monte Carlo Simulation is integrated in that FEM modeling for reliability-based remaining service life prediction. The paper is organized as follows: firstly general scheme for reliability-based remaining service life of concrete structures is introduced, then the FEM models for chloride penetration, corrosion product expansion and cover cracking are briefly explained, finally an example is demonstrated and the effects of localization of chloride concentration and corrosion product expansion on service life using above model are discussed.

  • PDF

Service Life Prediction and Cost Estimation of Repaired Concrete Structures Under Marine Environment (염해 환경 하 보수된 콘크리트 구조물의 사용수명 예측 및 보수 비용 평가)

  • Shim, Hyun Bo;Ann, Ki Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.226-234
    • /
    • 2011
  • The service life of concrete structures exposed to a marine environment can be extended by controlling the amount of chloride in cover concrete. Patching is one of the appropriate maintenance techniques for chloride contamination. Chloride-contaminated cover concrete is removed and replaced with sound one. It can provide less risk of corrosion of steel, so that the structure can be maintained for required service life. In this study, a quantitative assessment of the service life subjected to the chloride attack is proposed to determine the effective repair options such as repair depth, repair material and timing of repair. The Crank-Nicolson based finite difference formulation from Fick's second law is proposed to predict the profiles of chloride ion in a repaired concrete structure, considering ingress of chloride from outer and redistribution of residual chloride from the substrate concrete. Therefore, the repair application times and maintenance cost for the target service life can be estimated. Finally, the numerical examples are presented to ensure its applicability.