• Title/Summary/Keyword: 염제거

Search Result 798, Processing Time 0.029 seconds

Reaction Characteristics of Simultaneous Removal of $SO_{x}/NO_{x}$ from flue gas with $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst (산화구리가 담지된 알루미나 흡수제/촉매를 이용한 배연 탈황/탈질 동시제거 반응특성)

  • 유경선;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.97-100
    • /
    • 1994
  • 산화구리가 담지된 알루미나 흡수제/촉매를 이용하여 유황산화물과 질소산화물의 제거반응 특성을 고정층 반응기를 이용하여 고찰하였다. 반응온도가 증가할 수록 $350^{\circ}C$까지 탈질 효율이 증가하였으며 그 이상의 온도에서는 암모니아의 산화에 의하여 탈질효율이 감소하였다. 암모니아의 $NO_{x}$ 선택성은 $SO_{x}$ 가 존재하지 않는 경우에 $NH_3/NO_{x}$mole 비 1.0 까지 유지되었으나 $SO_{x}$ 가 존재하면 선택성은 매우 감소하였다. 동시제거 반응의 경우 $400^{\circ}C$ 이상에서 효과적이었으며 $350^{\circ}C$ 이하에서는 암모늄 염의 생성으로 인하여 탈질효율의 감소가 반응시간이 증가함에 따라서 감소하였다.

  • PDF

Reaction Characteristics of SOx/NOx Removal Using CuO/γ-Al2O3 Sorbent/Catalyst (CuO/γ-Al2O3 흡수제/촉매를 이용한 SOx/NOx 제거 반응특성)

  • Yoo, Kyung Seun;Kim, Sang Done
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.671-678
    • /
    • 2000
  • Reaction characteristics of simultaneous removal of SOx and NOx have been investigated in a thermogravimetric analyzer and tubular fixed bed reactor using the $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst. Sulfur removal capacity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is largely enhanced above both the temperature of $450^{\circ}C$ and the loading of 6wt% due to the participation of alumina support in a sulfation reaction. The NO reduction efficiency of 8wt% $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst shows the maximum value at $370^{\circ}C$ and then decreases with the increase of reaction temperature due to the oxidation of $NH_3$ gas. The presence of sulfate on the surface of sorbent/catalyst enhances the optimum reaction temperature showing the maximum deNOx efficiency. In the simultaneous removal of SOx and NOx at $250^{\circ}C$. deNOx activity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is rapidly decreased due to the formation of ammonium salts such as $NH_4HSO_4$. In the simultaneous removal reaction of SOx and NOx, the optimum temperature showing the maximum deNOx efficiency increases to $400^{\circ}C$ due to the presence of $SO_2$ gas.

  • PDF

Autotrophic Nitrite Denitrification Using Sulfur Particles for Treatment of Wastewaters with Low C/N Ratios (Batch Tests) (C/N비가 낮은 하.폐수에서 황입자를 이용한 아질산성질소 탈질 연구(회분식 실험))

  • Yoon, Seung-Joon;Kang, Woo-Chang;Bae, Woo-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.851-856
    • /
    • 2010
  • A sulfur utilizing nitrite denitrification process could be placed after the shortcut biological nitrogen removal (SBNR) process. In this study, removal of nitrite using sulfur oxidizing denitrifier was characterized in batch tests with granular elemental sulfur as an electron donor and nitrite as an electro acceptor. At sufficient alkalinity, initial nitrite nitrogen concentration of 100 mg/L was almost completely reduced in the batch reactor within a incubation time of 22 h. Sulfate production with nitrite was 4.8 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N, while with nitrate 13.5 g ${SO_4}^{2-}/g$ ${NO_3}^-$-N. Under the conditions of low alkalinity, nitrite removal was over 95% but 15 h of a lag phase was shown. For nitrate with low alkalinity, no denitrification occurred. Sulfate production was 2.6 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N and alkalinity consumption was 1.2 g $CaCO_3/g$ ${NO_2}^-$. The concentration range of organics used in this experiment did not inhibit autotrophic denitrification at both low and high alkalinity. This kind of method may solve the problems of autotrophic nitrate denitrification, i.e. high sulfate production and alkalinity deficiency, to some extent.

Removal of Co++ Ion in the Hollow Fiber Ultrafiltration System using Anion Surfactant Micellar Enhancement (음이온 계면활성제 미셀형성을 이용한 중공사 한외여과막 시스템에서의 코발트(Co)이온 제거)

  • Yang, Hyun-Soo;Han, Kwang-Hee;Choi, Kwang-Soon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.109-117
    • /
    • 1996
  • Removal of metal ions on the ultrafiltration membrane with micellar-enhanced with anion surfactants is a recently developed technique which can remove heavy metals and small molecular weight ions from wastewater with simple separation process and without a phase change. Above a certain concentration, so called the critical micelle con binding cationic cobalt ions and anionic surfactants, were removed by ultrafiltration membrane. The transmembrane pressure difference had a relatively small effect on the rejection coefficient of metal ions on the ultrafiltration membrane whereas the level of anionic surfactant-to-metal ratio (S/M) had a substantial effect.

  • PDF

원자층 식각방법을 이용한, Contact Hole 내의 Damage Layer 제거 방법에 대한 연구

  • Kim, Jong-Gyu;Jo, Seong-Il;Lee, Seong-Ho;Kim, Chan-Gyu;Gang, Seung-Hyeon;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.244.2-244.2
    • /
    • 2013
  • Contact Pattern을 Plasma Etching을 통해 Pattering 공정을 진행함에 있어서 Plasma 내에 존재하는 High Energy Ion 들의 Bombardment 에 의해, Contact Bottom 의 Silicon Lattice Atom 들은 Physical 한 Damage를 받아 Electron 의 흐름을 방해하게 되어, Resistance를 증가시키게 된다. 또한 Etchant 로 사용되는 Fluorine 과 Chlorine Atom 들은, Contact Bottom 에 Contamination 으로 작용하게 되어, 후속 Contact 공정을 진행하면서 증착되는 Ti 나 Co Layer 와 Si 이 반응하는 것을 방해하여 Ohmic Contact을 형성하기 위한 Silicide Layer를 형성하지 못하도록 만든다. High Aspect Ratio Contact (HARC) Etching 을 진행하면서 Contact Profile을 Vertical 하게 형성하기 위하여 Bias Power를 증가하여 사용하게 되는데, 이로부터 Contact Bottom에서 발생하는 Etchant 로 인한 Damage 는 더욱 더 증가하게 된다. 이 Damage Layer를 추가적인 Secondary Damage 없이 제거하기 위하여 본 연구에서는 원자층 식각방법(Atomic Layer Etching Technique)을 사용하였다. 실험에 사용된 원자층 식각방법을 이용하여, Damage 가 발생한 Si Layer를 Secondary Damage 없이 효과적으로 Control 하여 제거할 수 있음을 확인하였으며, 30 nm Deep Contact Bottom 에서 Damage 가 제거될 수 있음을 확인하였다. XPS 와 Depth SIMS Data를 이용하여 상기 실험 결과를 확인하였으며, SEM Profile 분석을 통하여, Damage 제거 결과 및 Profile 변화 여부를 확인하였으며, 4 Point Prove 결과를 통하여 결과적으로 Resistance 가 개선되는 결과를 얻을 수 있었다.

  • PDF

The investigation of adsorption properties of filter media for removal efficiency of nitrogen, phosphorus using experimental and density functional theory (실험 및 밀도범함수이론을 이용한 질소, 인 저감 효과 분석을 위한 여재의 흡착 특성 연구)

  • Kim, Taeyoon;Kwon, Yongju;Kang, Choonghyun;Kim, Jongyoung;Shin, Hyun Suk;Kwon, Soonchul;Cha, Sung Min
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.263-271
    • /
    • 2018
  • In this study, we analyzed the removal efficiency of ammonia nitrogen and phosphate dependant on the column depths using various absorbents such as zeolite silica sand, and activated carbon through the column test. In addition, we analyzed electrochemical adsorption behaviors of ammonia nitrogen and phosphate through the quantum mechanical calculation based on density functional theory calculation. Experimental results represent the removal efficiency of ammonia nitrogen and phosphate are zeolite > activated carbon > silica sand, and activated carbon > zeolite > silica sand, respectively. Zeolite shows high adsorption property for ammonia nitrogen over 90%, regardless of the column depth, while activated carbon exhibits high adsorption property for both ammonia nitrogen and phosphate as the column depth for filter media increases. Theoretical findings using DFT calculation for the adsorption behaviors of adsorbents (activated carbon and silica sand) and nutrients ($PO_4{^{3-}}$, $NH_4{^{+}}$) show that activated carbon represented narrower HOMO-LUMO band gap with high adsorption energy, and even more favorable environment for electron adsorption than silica sand, which leads to the effective removal of nutrients.

Selective Nitrate Removal Performance Analysis of Ion Exchange Resin in Shipboard Waste Washwater by Air Pollution Prevention Facility (선박용 대기오염장치 폐세정수 내 질산염의 선택적 제거를 위한 이온교환수지 공정 성능 평가)

  • Kim, Bong-Chul;Yeo, In-Seol;Park, Chan-Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.399-404
    • /
    • 2021
  • From 1 January 2020, the limit for Sulphur in fuel oil used on board ships operating outside designated emission control areas will be reduced to 0.5 %. This regulation by international maritime organization (IMO) is able to significantly reduce the amount of Sulphur oxides (SOx) discharging from ships and should have environmental advantages and health for all over the world. To meet the regulation, in these days, wet scrubber system is being actively developed. However, this process leads to make washing wastewater. In this study, we evaluated ion exchange resin system in accordance with scrubber wastewater discharge regulation by IMO. Theoretical wastewater used as feed solution of lab scale water treatment systems. The results revealed that nitrate ion was removed selectively in spite of high TDS wash wastewater solution depending on ion exchange resin property. Moreover, it was possible to improve efficiency of the system by optimizing operating conditions.

The Responses of Antioxidative Enzymes and Salt Tolerance of Atriplex gmelini (Atriplex gmelini(가는갯능쟁이)의 내염성과 항산화 효소 반응)

  • 배정진;윤호성;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.273-280
    • /
    • 2003
  • Saline conditions invoke oxidative stress attributed to the overproduction of reactive oxygen species (ROS). Changes in quantum efficiency and antioxidative enzyme activity upon salt treatment were examined in a salt-tolerant plant, Atriplex gmelini, to test the hypothesis that salt tolerance of A. gmelini is due to the increased activity of antioxidative enzymes. A. gmelini showed optimum growth at 100 mM NaCl producing 116% of the shoot dry weight over control plants in 0 mM NaCl treatment. Healthy growth persisted up to 300 mM NaCl treatment maintaining normal internal water content and dry weight. No photochemical stress or damages on antioxidative defense system was obvious in plants of 2 and 4 day salt treatment which was indicated by increased quantum efficiency (Fv/Fm value), decreased stress index (Fo/Fm value), and increased activity of antioxidative enzymes such as SOD, APX, GR. However, the plants treated with 400 mM NaCl showed decrease in growth and in antioxidative enzyme activity although the enzyme activity was still higher than that of the 0 mM NaCl treated plants (l31%, 114%, and 134% of the SOD, APX, and GR activity, respectively). Interestingly, another important antioridative enzyme that scavenges H₂O₂ in plant cells, CAT, showed rapid decrease in its activity as salt concentration increased; 38%, 22%, 15% of the 0 mM NaCl treated plants at 200, 300, 400 mM NaCl treatments, respectively. It appears that the enzymes in ascorbate-glutathione cycle such as APX and GR play the major roles in scavenging ROS produced by salt stress in A. gmelini. After 6 days of salt treatment, the damage in photochemical and antioxidative defense system was indicated by decreased Fv/Fm value and increased Fo/Fm value. A. gmelini appears to cope with short term salt treatment by enhanced activity of the antioxidative defense system, whereas long term stress invoke oxidative stress by increased ROS due to the damages in photochemical and antioxidative system.

Isolation and Characterization of Ammonia-removing Bacteria from a Food-wastewater Treatment Facility (식품 폐수 처리 시설에서 암모니아성 악취제거 세균의 분리 및 특성 분석)

  • Oh, Kyoung-Hee;Choi, In-Hak;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.653-658
    • /
    • 2008
  • The bacteria responsible for the reduction of ammonia concentration in a food-wastewater treatment facility were isolated and their characteristics were analyzed. The isolated bacteria were closely related to the bacteria belonging to genus Citrobacter, Enterobacter, Buttiauxella, Shigella, and Aeromonas, which were found in gut of animals, indicating the isolated bacteria may come from the butchery-byproduct of pigs which is the main component of wastewater. When we monitored the concentration of nitrite and nitrate in the process, it was relatively constant, indicating the isolated bacteria reduce ammonia concentration through ammonia assimilation. Based on the removal efficiency of ammonia by the isolated bacteria, we concluded that they play a role in the reduction of odorous compounds.

Removal of Uranium from U-bearing Lime-Precipitate using dissolution and precipitation methods (우라늄 함유 석회침전물의 용해 및 침전에 의한 U 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Chung, Dong-Yong;Kim, Kwang-Wook;Lee, Kune-Woo;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • This study was carried out to remove (/recover) the uranium from the Uranium-bearing Lime Precipitate (ULP). An oxidative dissolution of ULP with carbonate-acidified precipitation and a dissolution of ULP with nitric acid-hydrogen peroxide precipitation were discussed, respectively. In point of view the dissolution of uranium in ULP, nitric acid dissolution which could dissolved more than 98% of uranium was more effective than carbonate dissolution. However, in this case, uranium was dissolved together with a large amount of impurities such as Al, Ca, Fe, Mg, Si, etc. and some impurities were also co-precipitated with uranium during a hydrogen peroxide precipitation. On the other hand, in the case of carbonate dissolution-acidified precipitation, U was dissolved less than 90%. Therefore, it was less effective than nitric acid dissolution for the volume reduction of radioactive solid waste. However, it was very effective to recover the pure uranium, because impurities were hardly dissolved and hardly co-precipitated with uranium.