• Title/Summary/Keyword: 염색체

Search Result 1,380, Processing Time 0.028 seconds

Imputation Accuracy from 770K SNP Chips to Next Generation Sequencing Data in a Hanwoo (Korean Native Cattle) Population using Minimac3 and Beagle (Minimac3와 Beagle 프로그램을 이용한 한우 770K chip 데이터에서 차세대 염기서열분석 데이터로의 결측치 대치의 정확도 분석)

  • An, Na-Rae;Son, Ju-Hwan;Park, Jong-Eun;Chai, Han-Ha;Jang, Gul-Won;Lim, Dajeong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1255-1261
    • /
    • 2018
  • Whole genome analysis have been made possible with the development of DNA sequencing technologies and discovery of many single nucleotide polymorphisms (SNPs). Large number of SNP can be analyzed with SNP chips, since SNPs of human as well as livestock genomes are available. Among the various missing nucleotide imputation programs, Minimac3 software is suggested to be highly accurate, with a simplified workflow and relatively fast. In the present study, we used Minimac3 program to perform genomic missing value substitution 1,226 animals 770K SNP chip and imputing missing SNPs with next generation sequencing data from 311 animals. The accuracy on each chromosome was about 94~96%, and individual sample accuracy was about 92~98%. After imputation of the genotypes, SNPs with R Square ($R^2$) values for three conditions were 0.4, 0.6, and 0.8 and the percentage of SNPs were 91%, 84%, and 70% respectively. The differences in the Minor Allele Frequency gave $R^2$ values corresponding to seven intervals (0, 0.025), (0.025, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 0.3). (0.3, 0.4) and (0.4, 0.5) of 64~88%. The total analysis time was about 12 hr. In future SNP chip studies, as the size and complexity of the genomic datasets increase, we expect that genomic imputation using Minimac3 can improve the reliability of chip data for Hanwoo discrimination.

Functional Expression of an Anti-GFP Camel Heavy Chain Antibody Fused to Streptavidin (Streptavidin이 융합된 GFP항원 특이적인 VHH 항체의 기능적 발현)

  • Han, Seung Hee;Kim, Jin-Kyoo
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1416-1423
    • /
    • 2018
  • With strong biotin binding affinity ($K_D=10^{-14}M$), the tetrameric feature of streptavidin could be used to increase the antigen binding activity of a camel heavy chain (VHH) antibody through their fusion, here stained with biotinylated horseradish peroxidase and subsequent immunoassays ELISA and Western blot analysis. For this application, we cloned the streptavidin gene amplified from the Streptomyces avidinii chromosome by PCR, and this was fused to the gene of the 8B9 VHH antibody which is specific to green fluorescent protein (GFP) antigens. To express a soluble fusion protein in Escherichia coli, we used the pUC119 plasmid-based expression system which uses the lacZ promoter for induction by IPTG, the pelB leader sequence at the N-terminus for secretion into the periplasmic space, and six polyhistidine tags at the C-terminus for purification of the expressed proteins using an $Ni^+$-NTA-agarose column. Although streptavidin is toxic to E. coli because of its strong biotin binding property, this soluble fusion protein was expressed successfully. In SDS-PAGE, the size of the purified fusion protein was 122.4 kDa in its native condition and 30.6 kDa once denatured by boiling, suggesting the tetramerization of the monomeric subunit by non-covalent association through the streptavidin moiety fusing to the 8B9 VHH antibody. In addition, this fusion protein showed biotin binding activity similar to streptavidin as well as GFP antigen binding activity through both ELISA and Western blot analysis. In conclusion, the protein resulting from the fusion of an 8B9 VHH antibody with streptavidin was successfully expressed and purified as a soluble tetramer in E. coli; it showed both biotin and GFP antigen binding activity suggesting the possible production of a tetrameric and bifunctional VHH antibody.

Association of SNPs in the HNF4α Gene with Growth Performance of Korean Native Chickens (한국 재래계의 HNF4α 유전자 내 SNP와 성장과의 연관성 분석)

  • Yang, Song-Yi;Choi, So-Young;Hong, Min-Wook;Kim, Hun;Kwak, Kyeongrok;Lee, Hyojeong;Jeong, Dong Kee;Sohn, Sea Hwan;Hong, Yeong Ho;Lee, Sung-Jin
    • Korean Journal of Poultry Science
    • /
    • v.45 no.4
    • /
    • pp.253-260
    • /
    • 2018
  • The hepatocyte nuclear factor 4 alpha ($HNF4{\alpha}$) gene is related to lipid transport, including abdominal fat and growth, in chickens. Interestingly, the A543G SNP within the $HNF4{\alpha}$ gene has previously been reported to be associated with body weight in both broilers and Korean native chickens (KNCs). However, its exact position within the HNF4 is not yet reported. This study aimed to identify the position of the A543G SNP and to identify additional SNPs that can be used as genetic markers in KNCs. A total of 128 KNCs were used for the sequencing and analysis of these genetic associations. As a result, A543G SNP was located in intron 4 of the $HNF4{\alpha}$ gene; it is reported as rs731246957 in the NCBI database. Fourteen SNPs were detected in the sequenced portion of the $HNF4{\alpha}$ gene; three of these, rs731246957, rs736159604 and new SNP, intron 6 (249), were significantly related with growth in the chickens. In this study, the TT genotype of rs731246957, previously reported as A543G SNP, the GG genotype of rs736159604 and GT of new SNP have are highly associated with body weight from birth to 40 weeks of age in KNCs (P<0.01). These results suggest that rs736159604, rs731246957 and intron 6 (249) SNPs within the $HNF4{\alpha}$ gene could function as growth-related markers in the selective breeding of KNCs.

Draft genome sequence of Ruminococcus sp. KGMB03662 isolated from healthy Korean human feces (건강한 한국인 분변으로부터 분리된 Ruminococcus sp. KGMB03662 균주의 유전체 염기서열 초안)

  • Han, Kook-Il;Kang, Se Won;Eom, Mi Kyung;Kim, Ji-Sun;Lee, Keun Chul;Suh, Min Kuk;Kim, Han Sol;Park, Seung-Hwan;Lee, Ju Huck;Park, Jam-Eon;Oh, Byeong Seob;Ryu, Seoung Woo;Yu, Seung Yeob;Choi, Seung-Hyeon;Lee, Dong Ho;Yoon, Hyuk;Kim, Byung-Yong;Lee, Je Hee;Lee, Jung-Sook
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.274-277
    • /
    • 2019
  • Ruminococcus sp. KGMB03662 was isolated from fecal samples obtained from a healthy Korean. The whole-genome sequence of Ruminococcus sp. KGMB03662 was analyzed using the PacBio Sequel platform. The genome comprises a 2,707,502 bp chromosome with a G + C content of 43.09%, 2,484 total genes, 2,367 protein-coding gene, 14 rRNA genes, and 53 tRNA genes. In the draft genome, genes involved in the hydrolysis enzyme, fatty acid biosynthesis, fatty acid metabolite, antibiotic biosynthesis, and antibiotic resistance have been identified. Those genes of KGMB03662 may be related to the regulation of human health and disease.

Anti-Cancer Effect of Ursolic Acid in Melanoma Cell A375SM and A375P (Ursolic acid의 악성 흑색종 세포주 A375SM과 A375P에서의 항암효능)

  • Woo, Joong-Seok;Kim, Na-Won;Lee, Jin-Gyu;Kim, Jae-Hyuk;Lim, Da-Young;Kang, Shin-Woo;Kim, Sung-Hyun;Yoo, Eun-Seon;Lee, Jae-Han;Han, So-Hee;Park, Young-Seok;Kim, Byeong-Soo;Kim, Sang-Ki;Park, Byung-Kwon;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.183-190
    • /
    • 2019
  • Ursolic acid is recognized for various effects such as anti-cancer, antioxidant, and anti-inflammatory activity. In this study, we confirmed the anti-cancer effect of ursolic acid on human melanoma cancer cells, A375SM and A375P. Survival rate of the melanoma cells was confirmed by MTT assay and the proliferation rate was confirmed by wound healing assay. The rate of apoptotic bodies was confirmed by DAPI staining, and apoptosis rate was confirmed by flow cytometry. The induction of apoptosis protein was examined by western blotting according to the concentration of ursolic acid in melanoma cells. The survival and proliferation rates of melanoma cells were decreased according to the treatment concentrations of ursolic acid. DAPI staining showed that chromosomal condensation of melanoma cells was increased with increasing concentrations of ursolic acid, and increased apoptosis rate of melanoma cells by ursolic acid was confirmed by flow cytometry. We also confirmed by western blotting that cleaved-PARP and Bax were increased and Bcl-2 was decreased at $12{\mu}M$ concentration of uricolic acid in melanoma cells. This study was carried out at low concentrations of ursolic acid, 0 to $20{\mu}M$, and analyzed 24 h after treatment. As a result of this study, it is thought that ursolic acid has the anti-cancer effect through the regulation of apoptosis-related proteins in melanoma cells A375SM and A375P.

The development of anti-DR4 single-chain Fv (ScFv) antibody fused to Streptavidin (Streptavidin이 융합된 DR4 항원에 특이적인 single-chain Fv 항체의 개발)

  • Kim, Seo Woo;Wu, Sangwook;Kim, Jin-Kyoo
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.330-342
    • /
    • 2018
  • The Streptavidin and Biotin system has been studied most extensively as the high affinity non-covalent binding of Biotin to STR ($K_D=10^{-14}M$) and four Biotin binding sites in tetrameric Streptavidin makes this system useful for the production of multivalent antibody. For the application of this system, we cloned Streptavidin amplified from Streptomyces avidinii chromosome by PCR and fused to gene of hAY4 single-chain Fv antibody specific to death receptor 4 (DR4) which is a receptor for tumor necrosis factor ${\alpha}$ related apoptosis induced ligand. The hAY4 single-chain Fv antibody fused to Streptavidin expressed in Escherichia coli showed 43 kDa monomer in heated SDS-PAGE. However, this fusion protein shown in both non-heated SDS-PAGE and Size-exclusion chromatography exhibited 172 kDa as a tetramer suggesting that natural tetramerization of Streptavidin by non-covalent association induced hAY4 single-chain Fv tetramerization. This fusion protein retained a Biotin binding activity similar to natural Streptavidin as shown in Ouchterlony assay and ELISA. Death receptor 4 antigen binding activity of purified hAY4 single-chain Fv fused to Streptavidin was also confirmed by ELISA and Westernblot. In addition, surface plasmon resonance analysis showed 60-fold higher antigen binding affinity of the hAY4-STR than monomeric hAY4 ScFv due to tetramerization. In summary, hAY4 single-chain Fv fused to Streptavidin fusion protein was successfully expressed and purified as a soluble tetramer in E. coli and showed both Biotin and DR4 antigen binding activity suggesting possible production of bifunctional and tetrameric ScFv antibody.

Identification of DNA Markers Related to Resistance to Herbicide Containing Mesotrione in Tongil Type Rice (통일형 벼에서 메소트리온계 제초제 저항성 연관 DNA marker 탐색)

  • Lee, Ji-Yoon;Cho, Jun-Hyeon;Lee, Jong-Hee;Cho, Su-Min;Kwon, Young-Ho;Park, Dong-Soo;Song, You-Chun;Ko, Jong-Min
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.387-395
    • /
    • 2018
  • This study was conducted to identify DNA markers related to resistance to herbicide containing mesotrione in Tongil type rice. Two Tongil type elite lines; Milyang154 and Suweon382, showed resistance to mesotrione, whereas the others were susceptible at 20 days after mesotrione application, and severe growth inhibition was observed in the remaining 13 lines. As a result of analysis of mesotrione resistance using 190 $F_2$ populations derived from a cross of Hanareum2 (susceptible) and Milyang154 (resistant), the mesotrione resistance locus was shown to be a single dominant gene with a 3:1 segregation ratio ($X^2=1.19$, P=0.31). To identify a DNA marker closely linked to the mesotrione resistance gene, bulked segregant analysis (BSA) was adopted. The DNA marker RM3501 was identified on chromosome 2 with a recombinant value of 0.53 to the mesotrione resistance gene. Mst1(t) was located between SSR (simple sequence repeat) markers RM3501 and RM324 with a physical map distance of 10.2 Mb-11.4 Mb on chromosome 2. The band pattern of agarose gel electrophoresis of the SSR marker RM3501 showed the same segregation pattern with respect to mesotrione treatment in 20 Tongil type varieties and a $BC_2F_2$ segregation population derived from a cross between Unkwang (resistant) and Hanareum2 (susceptible). Thus, the RM3501 DNA marker could be used in breeding programs for Marker Assisted Selection in mesotrione resistant rice breeding.

Identification and Chromosomal Reshuffling Patterns of Soybean Cultivars Bred in Gangwon-do using 202 InDel Markers Specific to Variation Blocks (변이영역 특이 202개 InDel 마커를 이용한 강원도 육성 콩 품종의 판별 및 염색체 재조합 양상 구명)

  • Sohn, Hwang-Bae;Song, Yun-Ho;Kim, Su-Jeong;Hong, Su-Young;Kim, Ki-Deog;Koo, Bon-Cheol;Kim, Yul-Ho
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.396-405
    • /
    • 2018
  • The areas of soybean (Glycine max (L.) Merrill) cultivation in Gangwon-do have increased due to the growing demand for well-being foods. The soybean barcode system is a useful tool for cultivar identification and diversity analysis, which could be used in the seed production system for soybean cultivars. We genotyped cultivars using 202 insertion and deletion (InDel) markers specific to dense variation blocks (dVBs), and examined their ability to identify cultivars and analyze diversity by comparison to the database in the soybean barcode system. The genetic homology of "Cheonga," "Gichan," "Daewang," "Haesal," and "Gangil" to the 147 accessions was lower than 81.2%, demonstrating that these barcodes have potentiality in cultivar identification. Diversity analysis of one hundred and fifty-three soybean cultivars revealed four subgroups and one admixture (major allele frequency <0.6). Among the accessions, "Heugcheong," "Hoban," and "Cheonga" were included in subgroup 1 and "Gichan," "Daewang," "Haesal," and "Gangil" in the admixture. The genetic regions of subgroups 3 and 4 in the admixture were reshuffled for early maturity and environmental tolerance, respectively, suggesting that soybean accessions with new dVB types should be developed to improve the value of soybean products to the end user. These results indicated that the two-dimensional barcodes of soybean cultivars enable not only genetic identification, but also management of genetic resources through diversity analysis.

Down syndrome in women aged more than 35 Years positive detection rates (산전선별검사를 통한 35세이상 산모 다운증후군 양성률 비교 평가)

  • Oh, Taek Min;Kim, Ga-Yeon;Lee, Young ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.314-320
    • /
    • 2021
  • With the increasing age of motherhood in recent years, attributed to late marriages due to social or environmental factors, the Down's syndrome screening test using biochemical markers has become essential for pregnant women. The process of diagnosing Down's syndrome pregnancy in the high-risk group subjects involves chromosomal analysis, which is performed on samples obtained through invasive procedures such as chorionic biopsy or amniotic fluid. Thus, to reduce unnecessary invasive tests and lower the risk to mother and fetus, it is important to identify a screening test with low risk and high Down's syndrome detection rate. Recently, as the average age of mothers has increased, numerous inspection agencies have classified high-risk mothers as women over the age of 35 years. This study evaluated a total of 36,436 pregnant women aged between 17 to 46 years, and who requested prenatal screening at an inspection agency in Yongin in 2018. Test (13,690 people) Four tests were conducted by applying the time-resolved fluoroimmunoassay method using the direct sandwich and indirect sandwich technology, and the immunoassay method using the sandwich method. We aimed to confirm the difference in positivity rate with increasing age of the subjects. We believe that in future, data obtained from this study will be very useful for the prevention and treatment of Down's syndrome risk at varied inspection institutions, and for prospective mothers.

A Case of Pseudodeficiency in a Potential Late Onset Pompe Disease Carrier, with Double Dual Variant, Each in cis Formation (Pseudodeficiency 및 potential late onset Pompe disease 보인자로 확인된 cis형 dual variant 돌연변이 두 개를 가진 여아 1례)

  • Seung Ho, Kim;Goo Lyeon, Kim;Young Pyo, Chang;Dong Hwan, Lee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.22 no.2
    • /
    • pp.58-62
    • /
    • 2022
  • Pompe disease (PD) is an autosomal recessive genetic disorder caused by a deficiency of the lysosomal enzyme acid α-glucosidase (GAA). It is easy to hastily diagnose as patients if they have two pathogenic variants. Clinical pathologists misdiagnosed our infant and her mother as PD. Here, we report a case of pseudodeficiency in a potential late-onset Pompe disease (LOPD) carrier with a double dual variant, each in cis formation in a 3-month infant. The person who has two pathogenic variants was diagnosed as a carrier, not a patient. It was first reported in Korea. The patient had: two likely pathogenic heterozygous mutations on exon #4: c.752C>T (p.Ser251Leu), c.761C>T (p.Ser254Leu), and a heterozygous mutation on exon #12: c.1726G>A (p.Gly576Ser), also with a heterozygous mutation on exon #15: c.2065G>A (p.Glu689Lys). By presenting this case we emphasize the possibility of cis formation of genes which may cause pseudodeficiency, and potential LOPD carrier form. Hereby we suggest that thorough evaluation of GAA gene is essential among whom initially diagnosed as PD.