Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.12.1416

Functional Expression of an Anti-GFP Camel Heavy Chain Antibody Fused to Streptavidin  

Han, Seung Hee (Division of Biohealth Science, College of Natural Sciences, Changwon National University)
Kim, Jin-Kyoo (Division of Biohealth Science, College of Natural Sciences, Changwon National University)
Publication Information
Journal of Life Science / v.28, no.12, 2018 , pp. 1416-1423 More about this Journal
Abstract
With strong biotin binding affinity ($K_D=10^{-14}M$), the tetrameric feature of streptavidin could be used to increase the antigen binding activity of a camel heavy chain (VHH) antibody through their fusion, here stained with biotinylated horseradish peroxidase and subsequent immunoassays ELISA and Western blot analysis. For this application, we cloned the streptavidin gene amplified from the Streptomyces avidinii chromosome by PCR, and this was fused to the gene of the 8B9 VHH antibody which is specific to green fluorescent protein (GFP) antigens. To express a soluble fusion protein in Escherichia coli, we used the pUC119 plasmid-based expression system which uses the lacZ promoter for induction by IPTG, the pelB leader sequence at the N-terminus for secretion into the periplasmic space, and six polyhistidine tags at the C-terminus for purification of the expressed proteins using an $Ni^+$-NTA-agarose column. Although streptavidin is toxic to E. coli because of its strong biotin binding property, this soluble fusion protein was expressed successfully. In SDS-PAGE, the size of the purified fusion protein was 122.4 kDa in its native condition and 30.6 kDa once denatured by boiling, suggesting the tetramerization of the monomeric subunit by non-covalent association through the streptavidin moiety fusing to the 8B9 VHH antibody. In addition, this fusion protein showed biotin binding activity similar to streptavidin as well as GFP antigen binding activity through both ELISA and Western blot analysis. In conclusion, the protein resulting from the fusion of an 8B9 VHH antibody with streptavidin was successfully expressed and purified as a soluble tetramer in E. coli; it showed both biotin and GFP antigen binding activity suggesting the possible production of a tetrameric and bifunctional VHH antibody.
Keywords
Camel heavy chain antibody (VHH); fusion protein; green fluorescent protein (GFP); streptavidin; tetramerization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, S. H., Park, D. W., Sung, E. S., Park, H. R., Kim, J. K. and Kim, Y. S. 2010. Humanization of an agonistic anti-death receptor 4 single chain variable fragment antibody and avidity-mediated enhancement of its cell death-inducing activity. Mol. Immunol. 47, 816-824.   DOI
2 Lei, S. P., Lin, H., Wang, S. S., Callaway, J. and Wilcox, G. 1987. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J. Bacteriol. 169, 4379-4383.   DOI
3 Lindqvist, Y., and Schneider, G. 1996. Protein-biotin interactions. Curr. Opin. Struct. Biol. 6, 798-803.   DOI
4 Park, K. J., Park, D. W., Kim, C. H., Han, B. K., Park, T. S., Han, J. Y., Lillehoj, H. S. and Kim, J. K. 2005. Development and characterization of a recombinant chicken single-chain Fv antibody detecting Eimeria acervulina sporozoite antigen. Biotechnol. Lett. 27, 289-295.   DOI
5 Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. and Ewers, H. 2012. A simple, versatile method for GFP-based superresolution microscopy via nanobodies. Nat. Methods 9, 582-.   DOI
6 Zimmermann, J., Voss, H., Schwager, C., Stegemann, J. and Ansorge, W. 1988. Automated Sanger dideoxy sequencing reaction protocol. FEBS Lett. 233, 432-436.   DOI
7 Arbabi-Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R., and Muyldermans, S. 1997. Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414, 521-526.   DOI
8 Cao, Y., Christian, S. and Suresh, M. R. 1998. Development of a bispecific monoclonal antibody as a universal immunoprobe for detecting biotinylated macromolecules. J. Immunol. Methods 220, 85-91.   DOI
9 Diamandis, E. P. and Christopoulos, T. K. 1991. The biotin-(strept) avidin system: principles and applications in biotechnology. Clin. Chem. 37, 625-636.
10 Dubel, S., Breitling, F., Kontermann, R., Schmidt, T., Skerra, A. and Little, M. 1995. Bifunctional and multimeric complexes of streptavidin fused to single chain antibodies (scFv). J. Immunol. Methods 178, 201-209.   DOI
11 Green, N. M. 1990. Avidin and streptavidin. Meth. Enzymol. 184, 51-67.
12 Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E. B., Bendahman, N. and Hamers, R. 1993. Naturally occurring antibodies devoid of light chains. Nature 363, 446-448.   DOI
13 Han, S. H., Kim, H. M., Lim, M. W. and Kim, J. K. 2015. Functional Expression of Soluble Streptavidin in Escherichia coli. J. Life Sci. 25, 631-637.   DOI
14 Huet, H. A., Growney, J. D., Johnson, J. A., Li, J., Bilic, S., Ostrom, L., Zafari, M., Kowal, C., Yang, G. and Royo, A. 2014. Multivalent nanobodies targeting death receptor 5 elicit superior tumor cell killing through efficient caspase induction. MAbs 6, 1560-1570.   DOI
15 Kim, J. K., Tsen, M. F., Ghetie, V. and Ward, E. S. 1994. Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis. Eur. J. Immunol. 24, 542-548.   DOI
16 Laitinen, O., Hytonen, V., Nordlund, H. and Kulomaa, M. 2006. Genetically engineered avidins and streptavidins. Cell. Mol. Life Sci. 63, 2992-3017.   DOI
17 Kipriyanov, S. M., Breitling, F., Little, M. and Dubel, S. 1995. Single-chain antibody streptavidin fusions: tetrameric bifunctional scFv-complexes with biotin binding activity and enhanced affinity to antigen. Hum. Antibodies Hybridomas 6, 93-101.   DOI
18 Koo, K., Foegeding, P. M. and Swaisgood, H. E. 1998. Development of a streptavidin-conjugated single-chain antibody that binds Bacillus cereus spores. Appl. Environ. Microbiol. 64, 2497-2502.