• Title/Summary/Keyword: 염료 판정

Search Result 9, Processing Time 0.019 seconds

꼭두서니 추출염료에 대한 TLC와 GC-MS 분석법의 비교 연구

  • 안춘순
    • Proceedings of the Costume Culture Conference
    • /
    • 2004.04a
    • /
    • pp.44-46
    • /
    • 2004
  • 심하게 퇴색된 출토 복식유물의 경우 유물의 고유색을 알지 못함은 물론 사용된 염료의 종류를 알지 못함으로 인하여 유물의 보존처리 및 장기간 보관과 전시에 큰 어려움을 지닌다. 이화학 분야에서는 미지시료의 기초 성분분석 방법으로서 thin layer chromatography(TLC)법이 오래 전부터 사용되었는데, 퇴색된 복식유물의 염료분석을 다룬 일부 선행연구에서는 이를 활용하여 유물의 염료를 판정하였다(Kharbade & Agrawal, 1985; Schweppe, 1989). (중략)

  • PDF

Examination of Berberine Dye using GC-MS after Selective Degradation Treatments (GC-MS를 이용한 Berberine 염료의 퇴화 거동 연구)

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.12
    • /
    • pp.2002-2010
    • /
    • 2009
  • The degradation behavior of berberine is examined using GC-MS to select the fingerprint products that can be used to identify berberine dye in badly faded archaeological textiles. A total of $100^{\circ}C$ thermal and $H_2O_2/UV/O_2$ degradation systems were used to degrade berberine chloride 0.1% solution up to 408 hours. The samples were analyzed using the GC-MS. Dihydroberberine, 2-pteridinamine, 6,7-dimethyl-N-[(trimethylsilyl) oxy]-, and 8-methoxy-11-[3-methylbutyl]-11H-indolo[3,2-c]-quinoline, 5-oxide were detected as the major products of thermal degradation and identified as the fingerprint products for berberine dye at the early stage of degradation. Isobenzofuran-1,3-dione,4,5-dimethoxy-, 9H-fluorene,3,6-bis(2-hydroxyethyl)-,1,3-dioxolo[4,5-g]isoquinolin-5(6H)-one,7,8-dihydro-, and 3-tert-butyl-4-hydroxyanisole were detected as the major products generated by the $H_2O_2/UV/O_2$ degradation and identified as the fingerprint products for berberine dye under severe degradation conditions.

Separation of Chromophoric Substance from Sappanwood under Different Extraction Conditions (염료 추출조건에 따른 소목의 색소성분 분리 거동)

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1653-1661
    • /
    • 2007
  • The research aimed to establish the standard extraction procedure for examining brazilin, the major chromophoric substance of Sappanwood, using GC-MS with the ultimate goal of identifying the sappanwood dye in severely faded archaeological textiles. The amount of brazilin represented by the GC abundance was the largest when acetone was used as the extraction medium, followed by methanol. Shaking plate operated at room temperature was more effective than the waterbath shaker which was operated at $30^{\circ}C$. In both cases, the extraction method which incorporated one hour pre-soaking before the 12 hours of actual extraction resulted in a larger amount of brazilin detection than the extraction procedure without the one hour pre-soaking. In case of water extraction, pH 5 resulted in the most effective pH level for the extraction of brazilin, The best GC-MS parameter for detecting brazilin was to set the column temperature initially at $50^{\circ}C$. gradually increase to $210^{\circ}C$ at a $23^{\circ}C/min$ rate, finally increase to $305^{\circ}C$ at $30^{\circ}C/min$ rate, and hold for 14 minutes, and the MSD scan range at $75{\sim}400m/z$.

Analysis of Degradation Products in Madder Dyed Fabrics in Selective Degradation Conditions (퇴화조건에 따른 꼭두서니 염색물의 퇴화물 연구)

  • Ahn, Cheun-Soon;Obendorf, S.-Kay
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.12 s.148
    • /
    • pp.1608-1618
    • /
    • 2005
  • The purpose of this investigation was to investigate the degradation products of the dye component extracted from madder dyed fabrics using the GC-MS analysis and to evaluate the change of color due to degradation treatment. Four different degradation protocols were used in this study,; refrigeration at $7^{\circ}C$ (LT), room temperature (RT), oven treatment at $100^{\circ}C$ (OV), and $H_2O_2/UV(PER)$ method. Degradation times for each thermal system were 6 hour, 24 hour, 48 hour, 1 week, 2 week, 4 week. Alizarin was detected from the control and degraded samples of both alizarin dyed and madder dyed fabrics. Benzoic acid, 2, 4-di-tert-butylphenol, phthalic anhydride were detected as the degradation products for both alizarin dyed and madder dyed fabrics. The result suggest that these products can be used as the fingerprints of GC-MS analysis for the identification of madder dye in archaeological textiles. Both alizarin dyed and madder dyed samples became less red and less yellow after degradation. In the PER degradation system madder dyed sample showed the greatest color difference even after 1 week of degradation treatment. Further research is necessary for investigating the color change in the exhumed textiles, which is caused by the dual action of dye fading and the staining of organic matters in the soil.

Analysis of the Degradation Products of Turmeric using GC-MS (GC-MS법을 이용한 울금의 퇴화물 분석)

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.6 s.165
    • /
    • pp.859-868
    • /
    • 2007
  • Degradation products of the dye extracted from turmeric and the turmeric dyed textiles were examined by using GC-MS after 100 oven (OV) and $H_2O_2/UV/O_2$(PER) treatments for up to 28 days. Throughout the OV degradation times, 2-propenoic acid, 3-(2-hydroxyphenyl)- was found consistently, while isovanillin, and vanillic acid were newly detected. In 28 day PER degradation sample, feruloylmethane, 2-propenoic acid, 3-(2-hydroxyphenyl)-, benzoic acid, and vanillic acid were detected as well as isovanillin. Feruloylrnethane, and 2-propenoic acid, 3-(2-hydroxyphenyl)- were detected from the degraded fabric samples. With the absence of curcuminoids in the GC-MS result, the decreasing pattern of 2-propenoic acid, 3-(2-hydrokyphenyl)- reflect the degradation of curcuminoids in turmeric extraction with the progression of OV degradation times. It is suggested that isovanillin, feruloylmethane, 2-propenoic acid,3-(2-hydroxyphenyl)-, and vanillic acid are the probable fingerprint products for determining the turmeric dye from the badly faded archaeological textiles.

Analysis of the Extracted Non-fibrous Matters from the Exhumed Textiles of Milchang-gun Burial of Mapo (마포 밀창군 묘 출토 복식유물의 섬유외 물질의 추출분석)

  • 안춘순
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.6
    • /
    • pp.902-912
    • /
    • 2003
  • The purpose of this research was two-folds; first, to investigate the type of soil contaminated in the Hunsang excavated from the Milchang-gun burial of Mapo for the purpose of proposing the adequate washing method, second, to utilize the chemical degradation result obtained from the previous research to identify the natural dye source used in the Hunsang textile. The application of KS K0251 test showed that the soil was more oleophilic than hydrophilic thus indicating that wet cleaning was more adequate that dry cleaning for the removal of Hunsang soil. The GC-MS result of the Hunsang extraction showed dimethyl phthalate and 2,4-di-tert-butylphenol as its degradation product and these coincided with the degradation products from the alizarin standard data of previous research. The comparison of the two suggested that it is likely that Hunsang was dyed with madder which has alizarin as its major chromophore.

  • PDF

Analysis of Component for Determining Illegal Gasoline (가짜휘발유 판정을 위한 성분 분석)

  • Lim, Young-Kwan;Won, Ki-Yoe;Kang, Byung-Seok;Park, So-Hwi;Jung, Seong;Go, Young-Hoon;Kim, Seong-Soo;Jung, Gil-Hyoung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.161-167
    • /
    • 2020
  • Petroleum is the most used energy source in Korea with a usage rate of 39.5% among the available 1st energy source. The price of liquid petroleum products in Korea includes a lot of tax such as transportation·environment·energy tax. Thus, illegal production and distribution of liquid petroleum is widespread because of its huge price difference, including its tax-free nature, from that of the normal product. Generally, illegal petroleum product is produced by illegally mixing liquid petroleum with other similar petroleum alternatives. In such case, it is easy to distinguish whether the product is illegal by analyzing its physical properties and typical components. However, if one the components of original petroleum product is added to illegal petroleum, distinguishing between the two petroleum products will be difficult. In this research, we inspect illegally produced gasoline, which is mixed with methyl tertiary butyl ether (MTBE) as an octane booster. This illegal gasoline shows a high octane number and oxygen content. Further, we analyze the different types of green dyes used in illegal gasoline through high performance liquid chromatography (HPLC). We conduct component analyses on the simulated sample obtained from premium gasoline and MTBE. Finally, the illegal gasoline is defined as premium gasoline with 10% MTBE. The findings of this study suggest that illegal petroleum can be identified through an analytic method of components and simulated samples.

Convenient Methods for the Extraction and Discrimination of Water-Soluble Plant Pigments (수용성 식물 색소 추출 및 판별에 관한 간편한 방법)

  • Chung, Sang-Ho;Byun, Young-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.353-360
    • /
    • 2009
  • The use of colorants as additives for foods and drinks is a significant factor to food consumers in determining the acceptability of processed foods. In recent years, the number of previously used artificial colorants/dyes suitable for food use has been drastically reduced as a result of toxicological studies. Therefore, the use of natural pigments such as anthocyanins and betacyanins that were known to have anticancer and antioxidant activities is increasingly required. In this study, the water-soluble plant pigments, anthocyanins and betacyanins, were easily extracted with a very simple method using a few organic solvents such as ethyl acetate, ethyl ether, and chloroform. After the extraction of them, these two major plant pigments could be also simply and rapidly separated and discriminated by a solely one-stepped agarose gel electrophoresis in a citrate buffer (pH 3.0).

Analysis of Components to Determine Illegal Premium Gasoline (가짜 고급휘발유 판정을 위한 성분 분석)

  • Lim, Young-Kwan;Kang, Byung-Seok;Lee, Bo-O-Mi;Park, So-Hwi;Park, Jang-Min;Go, Young-Hoon;Kim, Seung-Tae;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.232-239
    • /
    • 2021
  • Petroleum is the most consumed energy source in Korea with a usage rate of 38.7% among the available primary energy sources. The price of liquid petroleum products in Korea includes taxes such as transportation·environment·energy tax. Thus, illegal production and distribution of liquid petroleum is widespread because of its huge price difference from that of the normal product and its tax-free nature. Generally, the illegal petroleum product is produced by mixing liquid petroleum with other similar petroleum alternatives. The two kinds of gasoline, common gasoline and premium gasoline, are being distributed in Korea. The premium gasoline is often adulterated with cheaper common gasoline that lowers the octane number of gasoline. It is possible to distinguish them with their color difference, green and yellow for different grade gasoline. However, when small volume of common gasoline is added to premium gasoline, it is difficult to determine whether premium gasoline contained common grade or not. In this study, we inspect gasoline, which is illegally produced by mixing common gasoline to premium gasoline. When the ratio of mixing common gasoline is increased, premium gasoline shows decreasing absorbance at 600 nm and 650 nm under UV-Vis spectrometer. Moreover, the detected intensity (mV·s) of green dye in high performance liquid chromatography (HPLC) was decreased by common gasoline under 0.99 correlation value. The more the common gasoline is mixed, the more olefin and naphthene are detected by gas chromatography. In addition, trimethyl pentane as octane improver, paraffin and toluene are decreased by common gasoline mixing. The findings of this study suggests that illegal petroleum can be identified by analysis of components and simulated samples.