• Title/Summary/Keyword: 열-유동해석

Search Result 933, Processing Time 0.027 seconds

Study of Reduction of Mismatch Loss of a Thermoelectric Generator (열전발전 시스템의 부정합손실 저감방안 연구)

  • Choi, Taeho;Kim, Tae Young
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.3
    • /
    • pp.294-301
    • /
    • 2022
  • In this study, a multi-layer cascade (MLC) electrical array configuration method for thermoelectric generator consisting of plural number of thermoelectric modules (TEMs) was proposed to reduce mismatch loss caused by temperature maldistribution on the surfaces of the TEMs. To validate the effect of MLC on the mismatch loss reduction, a numerical model capable of reflecting multi-physics phenomena occuring in the TEMs was developed. MLC can be employed by placing a group of TEMs experiencing relatively low temperature differences in an electric layer with more electrical branches while locating a group of TEMs experiencing relatively high temperature differences in an electric layer with less electrical branches. The TEMs were classified using the temperature distribution obtained by the numerical model. A MLC with an optimal electrical branch ratio showed a 96.5% of electric power generation compared to an ideal case.

Evaluation on Temperature of FSW Zone of Magnesium Alloy using Experiment and FE Analysis (시험 및 유한요소법을 이용한 마그네슘 합금 마찰교반용접부 온도 특성 평가)

  • Sun, Seung-Ju;Kim, Jung-Seok;Lee, Woo-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.434-441
    • /
    • 2016
  • Friction Stir Welding (FSW) is a solid-state joining process involving the frictional heat between the materials and tools. The amount of heat conducted into the workpiece determines the quality of the welded zone. Excessive heat input is the cause of oxides and porosity defects, and insufficient heat input can cause problems, such as tunnel defects. Therefore, analyzing the temperature history and distribution at the center of the Friction Stir Welded zone is very important. In this study, the temperature distribution of the friction stir welding region of an AZ61 magnesium alloy was investigated. To achieve this goal, the temperature and metal flow was predicted using the finite element method. In FE analysis, the welding tool was simplified and the friction condition was optimized. Moreover, the temperature measuring test at the center of the welding region was performed to verify the FE results. In this study, the tool rotation speed was a more dominant factor than the welding speed. In addition, the predicted temperature at the center of the welding region showed good agreement with the measurement results within the error range of 5.4% - 7.7%.

Design of a pilot-scale helium heating system to support the SI cycle (파이롯 규모 SI 공정 시험 설비에서의 헬륨 가열 장치 설계)

  • Jang, Se-Hyun;Choi, Yong-Suk;Lee, Ki-Young;Shin, Young-Joon;Lee, Tae-Hoon;Kim, Jong-Ho;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • In this study, researchers performed preliminary design and numerical analysis for a pilot-scale helium heating system intended to support full-scale construction for a sulfur-iodine (SI) cycle. The helium heat exchanger used a liquefied petroleum gas (LPG) combustor. Exhaust gas velocity at the heat exchanger outlet was approximately 40 m/s based on computational thermal and flow analysis. The maximum gas temperature was reached with six baffles in the design; lower gas temperatures were observed with four baffles. The amount of heat transfer was also higher with six baffles. Installation of additional baffles may reduce fuel costs because of the reduced LPG exhausted to the heat exchanger. However, additional baffles may also increase the pressure difference between the exchanger's inlet and outlet. Therefore, it is important to find the optimum number of baffles. Structural analysis, followed by thermal and flow analysis, indicated a 3.86 mm thermal expansion at the middle of the shell and tube type heat exchanger when both ends were supported. Structural analysis conditions included a helium flow rate of 3.729 mol/s and a helium outlet temperature of $910^{\circ}C$. An exhaust gas temperature of $1300^{\circ}C$ and an exhaust gas rate of 52 g/s were confirmed to achieve the helium outlet temperature of $910^{\circ}C$ with an exchanger inlet temperature of $135^{\circ}C$ in an LPG-fueled helium heating system.

A Simulation Study for Selecting Optimum Position of a Superheater in a Waste Heat Recovery System Integrated with a Large Gasoline Engine (대형 가솔린 엔진의 폐열 회수 장치인 슈퍼히터의 최적 위치선정을 위한 시뮬레이션 연구)

  • Kim, Se Lin;Choi, Kyung Wook;Lee, Ki Hyung;Kim, Ki Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.69-73
    • /
    • 2016
  • Recently, automotive engineers have paid much attention to waste heat recovery technology as a possible means to improve the thermal efficiency of an automotive engine. A large displacement gasoline engine is generally a V-type engine. It is not cost effective to install two superheaters at each exhaust manifold for the heat recovery purposes. A single superheater could be installed as close to the exhaust manifold as possible for the higher recovery efficiency; however, only half of exhaust gas can be used for heat recovery. On the contrary, the exhaust temperature is decreased for the case where the superheater is installed at a junction of two exhaust tail pipes. With the fact in mind, the optimum position of a single superheater was investigated using simulation models developed from a commercial software package (i.e. AMESim). It was found that installing the superheater near the exhaust manifold could recover 3.8 kW more from the engine exhaust despite utilizing only half of the exhaust mass flow. Based on this result, the optimum layout of an automotive waste heat recovery system was developed and proposed in this paper.

Estimation of Groundwater Recharge Considering Water Balance and Groundwater Head Variation in Watershed (유역물수지와 지하수위변동을 고려한 지하수 함양량의 추정)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo;Won, Yoo-Seung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.693-697
    • /
    • 2007
  • 지하수 함양량을 산정하기 위해서 유역물수지 모형 또는 지하수위 변동곡선법등이 활용되어 왔으며, 각각의 장단점에 대한 많은 논의가 있었다. 지역내의 지하수 관리계획을 위해서는 유역물수지 모형이 적합한 반면, 실제(actual) 함양량의 정확성 문제가 있으며, 지하수위 변동곡선법은 실제 지하수의 증감을 통해 실제 함양변화를 잘 표현하는 반면, 그 영향권이 관측공에 의해 제한된다는 단점이 있다. 이와 같은 두 방법의 장점을 살리고 단점을 보완하기 위해 본 연구에서는 유역유출모의와 지하수위 변동을 동시에 고려하여 지하수 함양량을 추정하는 방안을 제시하였다. 수문학적 과정으로 함양을 분석하기 위해 준분포형 수문모형인 SWAT과 완전분포형 지하수 유동해석 모형인 MODFLOW의 결합모형을 이용한 유역단위 유출해석을 수행한다. 실제로 하천변에 위치한 관측공에서의 지하수위는 하천유출시계열과 유사한 양상을 보이며, 상류 경사지에 위치한 관측공의 지하수위는 토양수의 지체와 감수현상을 나타내므로 이같이 시간적으로 상이한 지체 양상을 반영하기 위해 모형내의 비포화대를 통과하는 함양의 거동을 기존의 단일 저수지 모형에서 다단 저수지 모형으로 개선하고 지체함수와 관련된 매개변수를 보정함으로써 모의 함양 시계열과 관측 지하수위 시계열간의 상관성 분석을 수행할 수 있다. 아울러 모의 및 관측 지하수위 분포의 비교를 통해 공간적인 지하수 분포에 대한 검증을 수행함으로써 함양량 산정 절차가 완성된다. 이같은 일련의 절차는 기존의 유역물수지 모형과 지하수위 변동법을 동시에 고려한 새로운 방식의 지하수 함양량 산정기법으로 제시할 수 있을 것이다.성빈맥(1예), 저심박출증(3예), 재수술이 필요했던 출혈(2예), 흉골 지연봉합(2예), 급성 신부전(2예), 폐렴(1예), 대동맥내 풍선펌프로 인한 혈전색전증(1예),수술 후 섬망(2예) 등이 있었다. 생존한 10명의 환자들 중 1명을 제외한 나머지 9명의 환자에서 $38{\pm}40$개월간의 추적관찰이 되었는데, 추적 관찰 기간 중에 3명이 사망하였고 생존한 6명의 환자는 모두 양호한 상태(NYHA 기능등급, $I{\sim}II$)를 보였으며, 그 중 3명에서는 혈역학적으로 큰 의미가 없는 잔여단락이 있었다. 결론: 급성 심근경색증 후 심실중격 결손은 수술위험도가 높은 질환이지만, 수술 전 대동맥내 풍선펌프를 삽입하고 조기에 심실중격 결손부의 infarct exclusion 술식과 함께 관상동맥우회술을 시행함으로써 만족할 만한 수술 및 중기 결과를 얻을 수 있었다.출물 투여로 저하되었으나 NC군보다는 높게 나타났다. 간 중 중성지질 함량은 참나물 에탄올 추출물 투여 용량에 따른 유의차가 없었으나, 총콜레스테롤 함량은 고용량 병합투여한 HC-PBH군만 유의하게 저하되었다. 혈청 및 간 중의 지질 함량 변화는 정상식이를 급여한 NC군과 NC-PB군 간에는 유의차가 없었다. 따라서 고콜레스테롤식이를 급여하면서 참나물 에탄올 추출물을 병합투여 시에만 지질대사 개선 효과가 있는 것으로 여겨지며, 고용량 병합투여 시 효능이 더 큰 것으로 나타났다. 고콜레스테롤식이로 인한 산화적 스트레스가 고콜레스테롤혈증을 유발하였으며, 이는 참나물 에탄올 추출물에 함유된 항산화물질을 포함한 여러 생리활성물질

  • PDF

Numerical Interpolation on the Simulation of Air Flow Field and the Effect of Data Quality Control in Complex Terrain (객관 분석에 의한 복잡지형의 대기유동장 수치모의와 모델에 의한 자료질 조절효과)

  • Lee Hwa woon;Choi Hyun-Jung;Lee Kang-Yoel
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.97-105
    • /
    • 2005
  • In order to reduce the uncertainties and improve the air flow field, objective analysis using asynoptic observational data is chosen as a method that enhances the reality of meteorology. In surficial data and their numerical interpolation for improving the interpretation of meteorological components, objective analysis scheme should perform a smooth interpolation, detect and remove the bad data and carry out internal consistency analysis. For objective analysis technique which related to data reliability and error suppression, we carried out two quality control methods. In site quality control, asynoptic observational data at urban area revealed low representation by the complex terrain and buildings. In case of wind field, it was more effective than temperature field when it were interpolated near waterbody data. Many roads, buildings, subways, vehicles are bring about artificial heat which left out of consideration on the simulation of air flow field. Therefore, in temperature field, objective analysis for more effective result was obtained when surficial data were interpolated as many as possible using value quality control rather than the selection of representative site.

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

Analysis of Groundwater Variations using the Relationship Between Groundwater use and Daily Minimum Temperature in a Water Curtain Cultivation Site (수막재배지역에서 일최저기온과 지하수 이용량의 상관관계를 이용한 지하수위 변화 분석)

  • Chang, Sunwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.217-225
    • /
    • 2014
  • Water curtain cultivation (WCC) systems in Korea have depleted water resources in shallow aquifers through massive pumping of groundwater. The goal of this study is to simulate the groundwater variations observed from massive groundwater pumping at a site in Cheongweon. MODFLOW was used to simulate three-dimensional regional groundwater flow, and the SWAT (Soil and Water Assessment Tool) watershed hydrologic model was employed to introduce temporal changes in groundwater recharge into the MODFLOW model input. Additionally, the estimation method for groundwater discharge in WCC areas (Moon et al., 2012) was incorporated into a groundwater pumping schedule as a MODFLOW input. We compared simulated data and field measurements to determine the degree to which winter season groundwater drawdown is effectively modeled. A simulation time of 107 days was selected to match the observed groundwater drawdown from November, 2012 to March, 2013. We obtained good agreement between the simulated drawdown and observed groundwater levels. Thus, the estimation method using daily minimum temperatures, may be applicable to other cultivation areas and can serve as a guideline in simulating the regional flow of riverside groundwater aquifers.

Groundwater Flow Analysis in Fractured Rocks Using Zonal Pumping Tests and Water Quality Logs (구간양수시험과 수질검층자료에 의한 균열암반내 지하수 유동 분석)

  • Hamm, Se-Yeong;Sung, Ig-Hwan;Lee, Byeong-Dae;Jang, Seong;Cheong, Jae-Yeol;Lee, Jeong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.411-427
    • /
    • 2006
  • This study aimed to recognize characteristics of groundwater flow in fractured bedrocks based on zonal pump-ing tests, slug tests, water quality logs and borehole TV camera logs conducted on two boreholes (NJ-11 and SJ-8) in the city of Naju. Especially, the zonal pumping tests using sin91e Packer were executed to reveal groundwater flow characteristics in the fractured bedrocks with depth. On borehole NJ-11, the zonal pumping tests resulted in a flow dimension of 1.6 with a packer depth of 56.9 meters. It also resulted in lower flow dimensions as moving to shallower packer depths, reaching a flow dimension of 1 at a 24 meter packer depth. This fact indicates that uniform permissive fractures take place in deeper zones at the borehole. On borehole SJ-8, a flow dimension of 1.7 was determined at the deepest packer level (50 m). Next, a dimension of 1.8 was obtained at 32 meters of packer depth, and lastly a dimension of 1.4 at 19 meters of packer depth. The variation of flow dimension with different packer depths is interpreted by the variability of permissive fractures with depth. Zonal pumping tests led to the utilization of the Moench (1984) dual-porosity model because hydraulic characteristics in the test holes were most suitable to the fractured bedrocks. Water quality logs displayed a tendency to increase geothermal temperature, to increase pH and to decrease dissolved oxygen. In addition, there was an increasing tendency towards electrical conductance and a decreasing tendency towards dissolved oxygen at most fracture zones.

LOCA Analysis and Development of a Simple Computer Code for Refill-Phase Analysis (냉각재 상실사고 분석 및 재충진 단계해석용 전산코드 개발)

  • Ree, Hee-Do;Park, Goon-Cherl;Kim, Hyo-Jung;Kim, Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.200-208
    • /
    • 1986
  • The loss of coolant accident based on a double-ended cold leg break is analyzed with the discharge coefficient (Ca) of 0.4. This analysis covers the whole transient period from the start of depressurization to the complete refilling of the core by using RELAP4/MOD6-EM and RELAP4/ MOD6-HOT CHANNEL for the system thermal-hydraulics and the fuel performance during the blowdown phase respectively, and RELAP4/MOD6-FLOOD and TOODEE2 during the reflood phase. A simple analytical method has been developed to account for the lower plenum filling by approximating steam-water countercurrent flows and superheated wall effects at the downcomer during the refill period. Based on the informations. at the time of EOB (end-of-bypass), the refill duration time and the initial reflooding temperature were estimated and compared with the results from the RELAP4/MOD6, resulting in a good agreement. In addition, some parametric studies on the EOB were performed. The form loss coefficient between upper head and upper downcomer was found to be sensitive to the occurrence of the spurious EOB. Appropriate form loss coefficients should be taken into account to avoid the flow oscillations at the downcomer. The analyses with the six and three volume core nodalizations, respectively, show much similar trends in the system thermal-hydraulic performance, but the former case is recommended to obtain good results.

  • PDF