• Title/Summary/Keyword: 열 촉매 분해

Search Result 202, Processing Time 0.021 seconds

Study on Ni-based Bead Catalyst for Catalytic Thermal Decomposition of Light Hydrocarbons (경질 탄화수소 촉매 열분해를 위한 Ni 기반 구슬 촉매에 대한 연구)

  • JINHYEOK WOO;JUEON KIM;TAEYOUNG KIM;SOOCHOOL LEE;JAECHANG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2024
  • In this study, we researched Ni-based bead catalysts for the catalytic thermal decomposition of light hydrocarbons. A Ni-based bead-type catalyst was prepared, and catalytic thermal decomposition performance of light hydrocarbons was evaluated. The 30Ni/Al2O3 catalyst exhibited the most superior performance, with the presence of both fibrous and carbon black forms on the catalyst surface. Catalytic performance was evaluated for particles sized between 150-250 and 500 ㎛, with excellent catalytic thermal decomposition properties in the 150-250 ㎛ range. After the reaction, carbon removal through collision between catalysts in the fluidized bed was observed. It was confirmed that as the particle size increases, the amount of carbon removed increases.

Characterization of dissociation catalysts for waste plastics (폐플라스틱 분해 촉매의 특성)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Analytical Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.383-388
    • /
    • 2010
  • Catalytic dissociation reaction was studied in order to transform waste plastics to oil by using noble metal supported catalysts. XRD, SEM, and GC/MSD analysis were performed to find the crystalline structure and shape, and product distribution. Generally, dissociation reaction occurs at low temperature compared to pyrolysis. Dissociation reaction has advantage of gasoline yield with respect to pyrolysis which products mainly $C_1\simC_4$. The result of dissociation reaction, gasoline was obtained much as a product. $C_5\simC_{11}$ compounds were produced as a gasoline product on Pt-zeolite among noble metal catalysts at $340^{\circ}C$. The conversion of dissociation reaction of waste plastics on the prepared catalyst was above 70% over $340^{\circ}C$.

Decomposition Characteristics of CF4 by SiC/Al2O3 Modified with Cerium Sulfate Using Microwave System (마이크로파를 이용한 황산세륨으로 개질화 된 SiC/Al2O3 촉매의 CF4 분해 특성)

  • Choi, Sung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.668-673
    • /
    • 2015
  • Alumina-based catalysts with different Ce loadings were studied in the decomposition of $CF_4$ using microwave heating system. Heating material of microwave system used Silicon Carbide. The crystallographic phases of catalysts were investigated by XRD and decomposition rates of $CF_4$ were examined by GC-TCD. The catalysts of 10 wt% Ce modified $Al_2O_3$ showed higher $CF_4$ decomposition rate than un-modified $Al_2O_3$ for $500^{\circ}C$ reaction temperature. The k value of catalysts shows the order of $Ce(20)/Al_2O_3=Ce(0)/Al_2O_3<Ce(5)/Al_2O_3<Ce(10)/Al_2O_3$. XRD patterns of $Ce(0)/Al_2O_3$ were no difference before and after the reaction and showed $Al_2O_3$ phases. With the increase in Ce loadings, $CeO_2$, $AlF_3$ of XRD peaks was observed. The results was indicated that Ce modifed $Al_2O_3$ than un-modifed $Al_2O_3$ was decreased reaction temperature to $200^{\circ}C$ with same decomposition rate. Also the appropriated cerium sulfate loadings on $Al_2O_3$ were 5~10 wt%.

Preparation of Carbon Nanotubes and Carbon Nanowires from Methane Pyrolysis over Pd/SPK Catalyst (Pd/SPK 촉매상에서 메탄의 열분해 반응으로부터 탄소 나노튜브 및 탄소 나노선의 제조)

  • Seo, Ho Joon;Kwon, Oh Yun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.94-97
    • /
    • 2007
  • Carbon nanotubes and nanowires were prepared by methane pyrolysis over Pd(5)/SPK catalyst by changing oxygen molar ratio in a fixed bed flow reactor under atmospheric condition and also analyzed by SEM and TEM. When the $CH_4/O_2$ molar ratio was 1, carbons were not almost deposited on the catalyst bed support, but when it was 2, carbons were deposited as much as plugging reactor. TEM and SEM images for the deposited carbons showed a number of single-walled carbon nanotubes and carbon nanowires. The growth mechanism of carbon nanotubes produced on the catalyst surface was the tip growth mode. It should be played an important role in carbon nanotubes and nanowires produced on the catalyst bed support to formate the carbon growth velocity vectors and nuclei of ring structure of carbon nanowires. SPK carrier was $N_2$ isotherm of IV type with mesopores, and excellent in the thermal stability.

An experimental study on methanol decomposition catalysts for long distance-heat transportation (장거리 열수송을 위한 메탄올 분해 촉매에 대한 실험적 연구)

  • 문승현;박성룡;윤형기;윤기준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.334-342
    • /
    • 1998
  • In this experimental study, methanol was chosen as a system material for a long -distance heat transportation. Not only transition metals but also noble metals were investigated as an active component, and several metal oxides, such as ${\gamma}$-$Al_2$,$O_3$, $SiO_2$, etc. as a support. In general, transition metal catalysts absorbed more heat than noble metal catalysts. The amount of heat absorption and CO selectivity depends on temperature and methanol partial pressure, and 25$0^{\circ}C$ Ni/$SiO_2$ catalyst showed the best result for methanol decomposition reaction.

  • PDF

Cross Alkane Metathesis Reaction for Waste Plastic Degradation (폐플라스틱 분해를 위한 알칸 교차 복분해 반응)

  • Kim, Jueun;An, Kwangjin
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.2
    • /
    • pp.22-30
    • /
    • 2021
  • 현재 인류는 플라스틱(plastic) 세상에 살고 있다. 의류, 식품, 주거 생활 곳곳에 플라스틱이 존재하며, 플라스틱이 없는 세상은 상상조차 할 수 없다. 하지만, 플라스틱 사용량 증가에 따른 폐플라스틱의 배출량의 증가는 심각한 환경문제들을 야기하여 생태계뿐만 아니라 인간에게도 위협이 되고 있다. 이를 해결하기 위한 방법으로 단순히 폐플라스틱의 처리에 그치지 않고, 이를 활용하여 새로운 고부가가치의 생성물을 제조하는 플라스틱 업사이클링(plastic upcycling) 시스템이 최근 주목을 받고 있으며, 현재 다양한 형태로 연구개발이 진행되고 있다. 그 중의 한가지로 본 기고문에서는 알칸 교차 복분해(cross alkane metathesis) 반응을 소개한다. 알칸 교차 복분해 반응은 수소화/탈수소화(hydrogenation/dehydrogenation) 반응과 올레핀 복분해(olefin metathesis) 반응으로 이루어져, 탈수소화 반응 후 생성된 이중결합 탄소를 갖는 두 개의 알켄 화합물이 자리바꿈을 통해 새로운 이중 결합을 형성하는 반응이다. 이 촉매반응 과정이 반복되면 저분자화된 새로운 알칸 화합물을 생성되는데, 이는 기존의 플라스틱 처리방식인 열분해 및 촉매 분해 공정보다 낮은 반응온도를 요구한다. 또한 이를 통해 상대적으로 높은 순도의 가솔린 및 디젤을 생성할 수 있기 때문에 폐플라스틱 처리 공정의 새로운 대안기술이 될 수 있다. 본 기고문에서 폐플라스틱 중 가장 큰 비중을 차지하는 폴리에틸렌을 처리하는 대안기술로써 알칸 교차 복분해 반응의 메커니즘과 및 촉매의 역할, 그리고 반응성에 영향을 주는 인자에 대해 기술한다.

Endothermic Properties of Liquid Fuel Decomposition Catalyst Using Metal Foam Support (메탈폼 지지체를 이용한 액체연료 분해반응 촉매의 흡열특성)

  • Mun, Jeongin;Kim, Nari;Jeong, Byunghun;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.481-486
    • /
    • 2021
  • In a hypersonic vehicle to solve the heat problem generated during flight, a cooling technology is being developed which uses the endothermic effect that appears during the decomposition reaction of the mounted fuel. In this study, the decomposition reaction of n-dodecane fuel was performed using HZSM-5 as a catalyst, and the catalyst was coated on metal foam to maximize the endothermic effect of the catalytic decomposition reaction and suppress coke formation. The reactor was a stainless steel flow reactor with a outer diameter of 1.27 cm, and the reaction temperature was 550 ℃, the reaction pressure was 4 MPa, and the flow rate was 12 ml per minute. As a result of the catalytic decomposition reaction using a catalyst coated with HZSM-5 on the metal foam, the heat sink was 2887 kJ/kg as a maximum, the gas phase conversion rate was 34%, and the amount of coke produced on the metal foam decreased by about 56% as the catalyst was coated compared to the uncoated catalyst.

Viscosity Reduction by Catalytic Aquathermolysis Reaction of Vacuum Residues (접촉식 가수열분해 반응에 의한 감압잔사유의 점도 강하에 대한 연구)

  • Ko, Jin Young;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.468-473
    • /
    • 2018
  • In this study, the reforming reaction of vacuum residues (VR), high viscosity oil residues produced from vacuum distillation process of petroleum oil, was carried out using catalytic aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above $300^{\circ}C$ for 24 h. When the amount of steam is not enough at this reaction, the asphaltene content in the products was rather increased after the reaction. As a result of the catalytic aquathermolysis using the metal oxide-zeolite catalyst with the decaline as a hydrogen donor, a 10% decrease in resin and asphaltene as well as a 10% increase in the aromatic hydrocarbon were observed. Consequently, the viscosity of VR decreased by 70% after the reaction. GC-Mass spectroscopy showed that the aquathermolysis of VR resulted in the decomposition of the resins and asphaltens into a low molecular weight material.

A Study on the Optimization of Ni-ZSM-5 Endothermic Catalyst Preparation for Decomposition of n-Dodecane (n-dodecane 분해를 위한 Ni-ZSM-5 흡열촉매 제조 최적화 연구)

  • Hyeonsu Jeong;Younghee Jang;Ye Hwan Lee;Sung Chul Kim;Byung Hun Jeong;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.619-625
    • /
    • 2023
  • In order to solve problems caused by the heat load of hypersonic aircraft, this study examined the optimization of the Si/Al ratio of the catalyst and nickel ion exchange to improve the performance of the hydrocarbon decomposition reaction (endothermic reaction). It was confirmed that the catalysts prepared through Si/Al ratio optimization and nickel ion exchange showed about 10% improvement in heat absorption performance compared to thermal cracking at 4 MPa and 550 ℃. FT-IR and NH3-TPD analyses were found to identify factors affecting activity changes, and it was observed that the Si/Al ratio of the HZSM-5 catalyst was closely correlated with acid site development and catalytic activity. In addition, TGA and O2-TPO analyses were conducted to observe the carbon deposition inhibition properties of the nickel-added catalyst.

Effect of temperature in the distribution of production by catalytic decomposition on the carbon based catalyst (탄소계 촉매상에서 부탄 분해에 따른 생성물 분포에 미치는 온도의 영향)

  • Yoon, Suk-Hoon;Han, Gi-Bo;Park, No-Kuk;Ryu, Si-Ok;Lee, Tae-Jin;Yoon, Ki-June;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.89-92
    • /
    • 2006
  • 수소에너지는 화석연료 사용의 증가로 인한 환경오염 및 자원고갈의 문제점을 해결해 줄 수 있는 미래의 청정한 에너지이다. 현재 주 에너지원인 화석연료의 사용에 의하여 배출된 오염물질이 지구온난화와 같은 문제점들을 일으킨다. 이러한 문제점들을 없애줄 수 있는 대안 중 하나가 수소에너지이다. 수소에너지는 자원이 풍부하며 연소시에 오염물질이 배출되지 않는 장점이 있다. 수소에너지는 수소를 연소시켜서 얻는 에너지로써, 수소를 태우면 같은 무게의 가솔린 보다 3배나 많은 에너지를 방출한다. 수소를 생산하는 방법 중 가장 이상적인 방법은 물을 분해하는 방법이다. 그러나 이 방법은 수소를 대량으로 생산하기에는 아직 기술에 대한 확보가 되어있질 않으며, 경제성도 떨어진다는 단점이 있다. 현재 많이 쓰이는 방법 중 탄화수소류의 메탄을 수증기 개질하는 방법이 있다. 메탄 수증기 개질방법은 환경오염물질인 CO나 $CO_2$를 배출한다는 것과 높은 열원이 필요하다 본 연구에서는 C-H결합에너지가 낮아 메탄보다 분해하기 쉬운 부탄의 직접분해로 수소를 생산하고자 한다. 부탄 직접분해는 환경오염물질인 CO나 $CO_2$가 발생되지 않는 장점이 있다. 부탄 분해반응은 $500{\sim}1100^{\circ}C$의 범위에서 이루어 졌으며, 촉매는 탄소계인 카본블랙을 사용하였고, 촉매의 성능을 비교하기 위하여 열분해반응이 동시에 수행되었다.

  • PDF