• Title/Summary/Keyword: 열화학

Search Result 748, Processing Time 0.025 seconds

Assessment of System Reliability and Capacity-Rating of Concrete Box-Girder Highway Brdiges (R.C 박스거교의 체계신뢰성 해석 및 안전도 평가)

  • 조효남;신재철
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.187-198
    • /
    • 1995
  • This paper develops practical and reallstic reliabllity models and methods for the evaluation of system rehability and system rellabllity based ratlng of R.C box glrder bridge superstructures. The precise prediction of reberved carrying capacity of bridge as d system is extremely difficult especially when the brldges are highly redundant and slgnlficantly deter 1or;itcd or dainagetl. Thls papel proposes a nt2w approach for the evaluation of reseived system c,drrying capaaty of br~dges in terms ot equ~vdleiit system strength, which may b~ ddcflned as a brtdge system strength correipcmdlng tu the system rehability of the bridge. This cm be ticrAvcd from an Inverse process bami or1 the con~ept of FOSM(F1rst Order Second Moment) form of system reliabihty index. The sf rength llmt state models for K C box girder br~dges suggested In the paper dre based on the basi~ bending and shear strength And thc system reliatxllty pro,~lerri of box gritier super structure 1s formuldted as parallel serles models obtalncd f ~ o m thc FMA(Fdilure blode Rp proath) based on major failure mc>clmusrns or c~itlcal fdure ,>tatcs of each nuder .WOSM(Ad-vanced First Order Second Moment) and IST(1mportance Sampling Technique) simulation algorithm are used for the reliability analysis of the proposed models.

Effect of Firing Temperature on Microstructure and the Electrical Properties of a ZnO-based Multilayered Chip Type Varistor(MLV) (소성온도에 따른 ZnO계 적층형 칩 바리스터의 미세구조와 전기적 특성의 변화)

  • Kim, Chul-Hong;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.286-293
    • /
    • 2002
  • Microstructure and the electrical porperties of a ZnO-based multilayered chip-type varistor(abbreviated as MLV) with Ag/Pd(7:3) inner electrode have been studied as a function of firing of temperature. At 1100$^{\circ}$C, inner electrode layers began to show nonuniform thickness and small voids, which resulted in significant disappearance of the electrode pattern and delamination at 1100$^{\circ}$C. MLVs fired at 950$^{\circ}$C showed large degradation in leakage current, probably due to incomplete redistribution of liquid and transition metal elements in pyrochlore phase decomposition. Those fired at 1100$^{\circ}$C and above, on the other hand, revealed poor varistor characteristics and their reproductibility, which are though to stem from the deformation of inner electrode pattern, the reaction between electrode materials and ZnO-based ceramics, and the volatilization of $Bi_2O_3$. Throughout the firing temperature range of 950∼1100$^{\circ}$C, capacitance and leakage current increased while breakdown voltage and peak current decreased with the increase of firing temperature, but nonlinear coefficient and clamping ratio kept almost constant at ∼30 and 1.4, respectively. In particular, those fired between 1000$^{\circ}$C and 1050$^{\circ}$C showed stable varistor characteristics with high reproducibility. It seems that Ag/Pd(7:3) alloy is one of the electrode materials applicable to most ZnO-based MLVs incorporating with $Bi_2O_3$ when cofired up to 1050$^{\circ}$C.

An Experimental Study on the Properties of Chloride Binding of Mg/Al-NO3 and Ca/Al-NO3 Layered Double Hydroxides in Solution (수용액내에서 Mg/Al-NO3 및 Ca/Al-NO3 층상이중수산화물(LDHs)의 염소이온 고정화 특성에 관한 실험적 연구)

  • Lee, Seung-Yeop;Yang, Hyun-Min;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • Chloride ions ingress continuously in reinforced concrete through pores of it by $Cl^-$. Finally, it causes a localized corrosion of the rebar and then it generates cracks on concrete structures. Recently, new materials removing harmful anions have been developed. Layered double hydroxides(LDHs) has an excellent ability to remove harmful anions because various anions can be adsorbed in the interlayer space between divalent and trivalent cations. Thus, LDHs has been applied in various fields. Especially, LDHs is expected to be effective adsorbent binding chloride ions. In this study, $Ca/Al-NO_3$ and $Mg/Al-NO_3$ LDHs were prepared by using a co-precipitation method. $Ca/Al-NO_3$ and $Mg/Al-NO_3$ LDHs were compared and analyzed by using XRD, SEM analysis. Many nano size hexagonal crystals were observed by SEM. Experiments for binding chloride ions of LDHs were conducted by using potentiometric method. The experimental data were measured every 15 minutes. It was observed that the chloride ion content is reduced by increasing of LDHs mass fraction and the reaction rate of $Mg/Al-NO_3$ is faster than $Ca/Al-NO_3$. In future studies, binding chloride capacity in cement materials will be evaluated based on results of this study.

Technical Index for the Maintenance of Watertightness of the Roof of a Large-Span Membrane Structure (대공간 막 구조물 지붕의 수밀성능 확보를 위한 유지관리 지표 연구)

  • Oh, Sang-Keun;Kim, Dong-Bum;Lee, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • With the increased demand for membrane structures in recent years, there have been many studies of their mechanical properties, to the extent that such structures have become recognized as independent structures with a level of safety and durability comparable to those of other general structures. But in reality, the study for the maintenance of membrane structures has not been as active. In particularly, the study of watertightness from the perspective of maintenance has been very limited. Accordingly, a study on securing watertightness performance and the guidelines for maintenance is necessary. In this study, through a case study of water leakage accidents in membrane structures overseas, causes of leakage were selected from the membrane material itself, joint parts and open door of roof part in membrane structure. The water leakage and deterioration elements were analyzed from those leakage causes. The degree of importance of the water leakage and deterioration index was also designated using the AHP (Analytic Hierarchy Process) method. As a result, the basic technical index was suggested for the maintenance of the roofs of large-span membrane structures to prevent water leakage. This index will be used to make a guideline for the long-term maintenance of the roofs of large-span membrane structures.

A Study on the Base Properties of Nickel Type-Antifungal Agent for Reinforced Concrete Hume Pipe Lining (철근콘크리트흄관 라이닝용 니켈계 방균제의 기초적 특성 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.41-47
    • /
    • 2010
  • It has been continuously noted that many sewage treatment concrete structures have deteriorated due to sulfur-oxidizing bacteria. There have been many reports on approaches to protecting concrete from this bacteria corrosion. The purpose of this study is to evaluate the inhibition of growth of a sulfur-oxidizing bacterium by a antifungal agent such as $NiSO_4{\cdot}6H_2O$, and the characteristics of polymer cement mortar using nickel type antifungal agent. First, we developed antifungal agents using metal nickel and $NiSO_4{\cdot}6H_2O$ to inhibit the growth of thiobacillus novellus, which is the sulfur-oxidizing bacteria in concrete. Then, ordinary cement mortar and polymer cement mortar using nickel type antifungal agent with various polymer-cement ratios, and antifungal agent content were prepared, and were tested for the antifungal adding effect, compressive and flexural strengths, expansion and leaching of nickel ion. From the test results, it was confirmed that the adding of an antifungal agent has an inhibition effect on the growth of sulfur-oxidizing bacteria at antifungal agent contents of 20 mM or more. In addition, the strengths and expansion of polymer cement mortars are not significantly changed by the addition of an antifungal agent. Therefore, the nickel-type antifungal agent developed in this study can be used to improve the durability of reinforced concrete hume pipe in the construction industry.

Magnetoresistive Effect in Ferromagnetic Thin Films( II) (강자성체 박막(Co-Ni)의 자기-저항효과에 관한 연구(II))

  • Chang, C.J.;Yoo, J.Y.;Nam, S.W.;Son, D.R.
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.68-77
    • /
    • 1994
  • Grid type 70Ni-30Co thin films on slide glass at $250^{\circ}C$ has been fabricated to develope. From fabricated sensors using above process, we investigated the relation of temperature, resistivity, line width to magnetoresistance and we obtained the following results after observation of coercive force, saturated magnetization, maxium usable sensitivity, delay time, slew rate, white noise, resolution of the sensors. We confirmed that the $600{\AA}$ thin film at $250^{\circ}C$ formed crystalized magnetic anisotropy spontaneously and the sensor using the thin film had capability of detecting magnetic field with sensitivity of 230 nT. In these devices, the magnetoresistance change was increased linearly in ${\pm}10$ Oe range, and the magnetoresistance effect was increased when the ratio between line width and length was increased. When the devices was soldered using indium, the temperature-resistivity coefficient showed $8{\times}10^{-3}/deg$ and increased during the specific properties as magnetic field sensor were weakened. In this studies, the coercive forces of the films were about 5.1 A/cm and saturated magnetizations were 0.64 T, and the delay time in these devises was $5{\mu}s$ and slew rate showed 0.39 $Oe/{\mu}s$ and white noise was -120 dB.

  • PDF

Application of One-Sided Stress Wave Velocity Measurement Technique to Evaluate Freeze-Thaw Damage in Concrete (콘크리트 동결-융해 손상의 비파죄 평가를 위한 One-Sided 응력파 속도 측정기법의 적용에 관한 연구)

  • Lee, Joon-Hyun;Park, Won-Su
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.269-275
    • /
    • 2000
  • It is well recognized that damage resulting from freeze-thaw cycles is a serious problem causing deterioration and degradation of concrete. In general, freeze-thaw cycles change the microstructure of the concrete ultimately leading to internal stresses and cracking. In this study, a new method for one-sided stress wave velocity measurement has been applied to evaluate freeze-thaw damage in concrete by monitoring the velocity change of longitudinal and surface waves. The freeze-thaw damage was induced in a $400{\times}350{\times}100mm$ concrete specimen in accordance with ASTM C666 using s commercial testing apparatus. A cycle consisted of a variation of the temperature from -14 to 4 degrees Celsius. A cycle takes 4-5 hours with approximately equal times devoted to freezing-thawing. Measurement of longitudinal and surface wave velocities based on one-sided stress wave velocity measurement technique was made every 5 freeze-thaw cycle. The variation of longitudinal and surface wave velocities due to increasing freeze-thaw damage is demonstrated and compared to determine which one is more effective to monitor freeze-thaw cyclic damage progress. The variation in longitudinal wave velocity measured by one-sided technique is also compared with that measured by the conventional through transmission technique.

  • PDF

Evaluation of Nondestructive Evaluation Size Measurement for Integrity Assessment of Axial Outside Diameter Stress Corrosion Cracking in Steam Generator Tubes (증기발생기 전열관 외면 축균열 건전성 평가를 위한 비파괴검사 크기 측정 평가)

  • Joo, Kyung-Mun;Hong, Jun-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy600 HTMA tubes has been increasing. As a result, SGs with Alloy600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and abilty of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

Optical and Electrical Properties with Various Post-Heating Temperatures in the Al-Doped ZnO Thin Films by Sol-Gel Process (졸-겔법에 의해 제조된 Al-Doped ZnO 박막의 후열처리 온도에 따른 전기 및 광학적 특성)

  • Ko, Seok-Bae;Choi, Moon-Sun;Ko, Hyungduk;Lee, Chung-Sun;Tai, Weon-Pil;Suh, Su-Jeong;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.742-748
    • /
    • 2004
  • Isopropanol of low boiling point was used as a solvent to prepare Al-doped ZnO(AZO) thin films. A homogeneous and stable sol was made from Zn acetate a solute whose mole concentration was 0.7mol/$\iota$ and Al chloride as a dopant. Al-doped ZnO thin films were prepared by sol-gel method as a function of post-heating temperature from 500 to $700^{\circ}C$ and the optical and electrical properties were investigated. The c-axis orientation along (002) plane was enhanced with the increasing of post-heating temperature and the surface morphology of the films showed a homogeneous and nano-sized microstructure. The optical transmittance of the films post-heated below $650^{\circ}C$ was over $86\%$, but decreased at $700^{\circ}C$. The electrical resistivity of the thin films decreased from 73 to 22 $\Omega$-cm as the post-heating temperature increased up to $650^{\circ}C$, but increased greatly to 580 $\Omega$-cm at $700^{\circ}C$. XPS analysis indicated that the deterioration of electrical and optical properties was attributed to the precipitation of $Al_2O_3$ phase on the surface of AZO thin film. This result suggests that the optimum post-heating temperature to improve electrical and optical properties is $600^{\circ}C$.

The Influence of Oxygen Gas Flow Rate on Growth of Tin Dioxide Nanostructures (이산화주석 나노구조물의 성장에서 산소가스 유량이 미치는 영향)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.1-7
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is applied as an anode material in Li-ion batteries and a gas sensing materials, which shows changes in resistance in the presence of gas molecules, such as $H_2$, NO, $NO_2$ etc. Considerable research has been done on the synthesis of $SnO_2$ nanostructures. Nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in sensing gas molecules and improving the specific capacity of Li-ion batteries. In this study, $SnO_2$ nanostructures were grown on a Si substrate using a thermal CVD process with the vapor transport method. The carrier gas was mixed with high purity Ar gas and oxygen gas. The crystalline phase of the as-grown tin oxide nanostructures was affected by the oxygen gas flow rate. The crystallographic property of the as-grown tin oxide nanostructures were investigated by Raman spectroscopy and XRD. The morphology of the as-grown tin oxide nanostructures was confirmed by scanning electron microscopy. As a result, the $SnO_2$ nanostructures were grown directly on Si wafers with moderate thickness and a nanodot surface morphology for a carrier gas mixture ratio of Ar gas 1000 SCCM : $O_2$ gas 10 SCCM.