• Title/Summary/Keyword: 열화시험

Search Result 680, Processing Time 0.031 seconds

Microstructural Study of Mortar Bar on Akali-Silica Reaction by Means of SEM and EPMA Analysis (알칼리-실리카 반응에 의한 모르타르 봉의 SEM과 EPMA 분석을 통한 미세구조 연구)

  • Jun, Ssang-Sun;Lee, Hyo-Min;Jin, Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • In this study alkali reactivity of crushed stone was conducted according to the ASTM C 227 that is traditional mortar bar test, and C 1260 that is accelerated mortar bar test method. The morphology and chemical composition of products formed in mortar bar, 3 years after the mortar bar tests had been performed, were examined using scanning electron microscopy (SEM) with secondary electron imaging (SEI) and electron probe microanalysis (EPMA) with backscattered electron imaging (BSEI). The crushed stone used in this study was not identified as being reactive by ASTM C 227. However, mortar bars exceeded the limit for deleterious expansion in accelerated mortar bar test used KOH solution. The result of SEM (SEI) analysis, after the ASTM C 227 mortar bar test, confirmed that there were no reactive products and evidence of reaction between aggregate particles and cement paste. However, mortar bars exposed to alkali solution (KOH) indicated that crystallized products having rosette morphology were observed in the interior wall of pores. EPMA results of mortar bar by ASTM C 227 indicated that white dots were observed on the surface of particles and these products were identified as Al-ASR gels. It can be considered that the mortar bar by ASTM C 227 started to appear sign of alkali-silica reaction in normal condition. EPMA results of the mortar bar by ASTM C 1260 showed the gel accumulated in the pores and diffused in to the cement matrix through cracks, and gel in the pores were found to be richer in calcium compared to gel in cracks within aggregate particles. In this experimental study, damages to mortar bars due to alkali-silica reaction (ASR) were observed. Due to the increasing needs of crushed stones, it is considered that specifications and guidelines to prevent ASR in new concrete should be developed.

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

Effect of Air Contents, Deicing Salts, and Exposure Conditions on the Freeze-Thaw Durability of the Concrete (콘크리트의 동결융해 내구성에 공기량, 제설제, 노출조건이 미치는 영향에 관한 연구)

  • Lee, Byung-Duk
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.107-113
    • /
    • 2010
  • In this study, the relative effects of low-chloride deicier(LCD) and two other deicing agents on the scaling of concrete were conducted in a series of tests at laboratory accordance with the ASTM C 672. The solutions concentration of deicers tested included 1, 4, 10%. Tap water was used as control. The amount of scaling was evaluated gravimetrically. As test result of deicer solution types, when applied to 4% solutions, surface scaling of concrete after 56 freeze-thaw cycles was produced significantly as about 9 times on LCD solution, as about 18 times on $CaCl_2$ solution, and as about 33 times on NaCl solution comparing with tap water. As test result of deicer solution concentrations, relatively low concentrations (of the 4% by weight) of deicer were produced more surface scaling than higher concentrations (of the 10% by weight) or lower concentrations (of the 1% by weight) of deicer. It show that the damaging concentration is of the order of 3~4% for previous research result. It appears that the mechanism of surface scaling is primarily physical rather than chemical. Also, the effect of chloride deicier types, freeze-thaw cycling, and air contents on the performance of concrete was experimentally investigated. The results show that the concrete specimens subjected to freeze-thaw cycling scaled more severely in exposure to deicing salt than those in non-exposure to deicing salt, weight losses of the specimens tested in exposure to deicing salt were twice as much as those tested in non-exposure to deicing salt. Relative dynamic modulus of elasticity of concrete specimens decreased more quickly in exposure to deicing salt than in non-exposure to deicing salt. Also, relative dynamic modulus of elasticity of concrete specimens in exposure to sodium chloride deicing salt was decreased more quickly comparing with exposure to LCD salt. It is also shown that the chloride contents according to concrete specimen depths was more largely in exposure to LCD salt. When concrete specimen is exposed to chloride deicing salts and freeze-thaw cycling, performance degradation in the entrained air concrete(AE concrete) retarded more considerably comparing with non-entrained air concrete(Non-AE concrete).

The Study about the Preservation of the Paper of Mulberry (상지(桑紙)의 보존성(保存性)에 관한 연구)

  • Jung, Sun-Young
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.4 no.2
    • /
    • pp.1-22
    • /
    • 2004
  • This study is about the paper of Mulberry(桑紙). The paper which was usually applied to the ancient bookpaper and documents. But there is a rare record about it today. So the paper was made from the Mulberry(뽕나무) bast fiber using traditional handcraft method. and Paper Mulberry(닥나무) by traditional method. And tested by physical and optical methods in comparisons with Paper Mulberry(닥나무). The ratio of length/width of Mulberry fiber was 475, and its lignin content was lower than the Paper Mulberry. The Mulberry paper had similar forming properties and physical strength to the Paper Mulberry fiber. Therefore, the Mulberry fiber seem to be a good paper fiber for traditional paper. For the aging test, in the thermal acceleration treatment for 72 hours and 144 hours at the temperature of $105^{\circ}C$ incubator, the Mulberry paper was more deteriorative than the Paper Mulberry. In the ultraviolet acceleration treatment for 100 hours and 200 hours the Mulberry paper was less interior to the Paper Mullberry, in the increase of treatment time. And the Mulberry paper was approved to be a good traditional paper in appearance. Furthumore, in considing the sample of bred Mulberry species grown today, its paper is thought to be superio to the paper of Paper Mulberry in symptom of senility in natural ultraviolet light.

Chemical Resistance of Low Heat Cement Concrete Used in Wastewater Treatment Structures Built on Reclaimed Land (해안매립지 하수처리시설물에 적용한 저발열시멘트 콘크리트의 내화학성 평가)

  • Chung, Yongtaek;Lee, Byungjae;Kim, Yunyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.113-119
    • /
    • 2019
  • Concrete structures built on reclaimed land are combined with chemical erosion such as chlorine and sulfate ions from seawater. Chloride attack deteriorates the performance of the structure by corroding reinforcing bars. In addition, the waste water treatment structure has a problem that the concrete is deteriorated by the sulfate generated inside. Therefore, in this study, the characteristics and chemical resistance of low heat cement concrete used in wastewater treatment structures constructed on reclaimed land were evaluated. As a result of the experiment, the target slump and air content were satisfied under all the mixing conditions. The slump of low heat cement (LHC) concrete was higher than that of ordinary portland cement (OPC) concrete, while the air content of LHC concrete was smaller than that of OPC concrete with the same mix proportion. As a result of compressive strength test, OPC concrete showed higher strength at younger age compared to 28 days. In contrast, LHC concrete exhibited higher strength than OPC concrete at the age of 56 days. As a result of chlorine ion penetration tests, LHC-B concrete showed chlorine ion penetration resistance performance of the "very low" level at the age of 56 days. As a result of chemical resistance evaluation, when the LHC concrete is applied without epoxy treatment, chemical resistance is improved by about 18% compared to OPC concrete. In testing chemical resistance, the epoxy coated concrete exhibited less than 5% strength reduction when compared to sound concrete.

Development on Antibiotic Concrete Mixed with Antibacterial Metals and Metallic Salts (금속 및 금속염계 항균제가 혼입된 항균 콘크리트 개발)

  • Choi, Hong-Shik;Heo, Kwon;Lee, Ho-Beom;Lee, Si-Woo;Kwak, Hong-Shin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • In the sewage structures and wastewater facilities, concrete is exposed to hydrogen sulfide ($H_2S$) which acts as an acid material in a solution, and a strongly acidic sulfate ion ($SO{_4}^{-2}$) is generated by a sulfuric bacteria. Hence, a degradation of concrete with biochemical corrosion would be accelerated. Finally, durability of concrete and concrete structures may be greatly reduced. In this study, in order to remove the hydrogen sulfide which is used by the sulfuric bacteria organic-biologically, the antibiotic metal and metallic salt powders were mixed to concrete, and a suppressing performance of the sulfate ion was assessed. For the sulfuric acid bacteria, a comparative evaluation of antimicrobial performance on neutralized concrete specimens were carried out, also by a rapid chloride penetration test, chloride penetration depths and diffusion coefficients were measured for antibiotic concrete in accordance with the amount of metal and metallic salt-based antibacterial agents. Eventually, by an observation of the biochemical state of the surface of concrete specimens exposed outdoors, the performance and applicability of antibiotic concrete were confirmed.

Microstructures and Electrochemical Properties of Si-M (M : Cr, Ni) as Alloy Anode for Li Secondary Batteries (리튬이차전지용 Si-M (M : Cr, Ni) 합금 음극의 미세구조와 전기화학적 특성)

  • Lee, Sung-Hyun;Sung, Jewook;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • To compare the microstructure and electrochemical properties between two binary alloys (Cr-Si, Ni-Si), two composition of binary alloys with the same capacity were selected using phase-diagram and prepared by matrix-stabilization method to suppress the volume expansion of Si by inactive-matrix. Master alloys were made by Arc-melting followed by fine structured ribbon sample preparation by Rapid Solidification Process (RSP, Melt-spinning method) under the same conditions. Also powder samples were produced by wet grinding for X-Ray Diffraction (XRD) and electrochemical measurements. As predicted from the phase diagram, only active-Si and inactive-matrix ($CrSi_2$, $NiSi_2$) were detected. The results of Scanning Electron Microscope (SEM) and Transmission Electron Microscopy - Energy Dispersive X-ray Spectroscopy (TEM-EDS) show that Cr-Si alloy has finer microstructure than Ni-Si alloy, which was also predictable through phase diagram. The electrochemical properties related to microstructure were evaluated by coin type full- and half-cells. Separately, self-designed test-cells were used to measure the volume expansion of Si during reaction. Volume expansion of Cr-Si alloy electrode with finer microstructure was suppressed significantly and improved in cycle capability, in comparison Ni-Si alloy with coarse microstructure. From these, we could infer the correlation of microstructure, volume expansion and electrochemical degradation and these properties might be predicted by phase diagram.

Remaining Useful Life Prediction of Li-Ion Battery Based on Charge Voltage Characteristics (충전 전압 특성을 이용한 리튬 이온 배터리의 잔존 수명 예측)

  • Sim, Seong Heum;Gang, Jin Hyuk;An, Dawn;Kim, Sun Il;Kim, Jin Young;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.313-322
    • /
    • 2013
  • Batteries, which are being used as energy sources in various applications, tend to degrade, and their capacity declines with repeated charging and discharging cycles. A battery is considered to fail when it reaches 80% of its initial capacity. To predict this, prognosis techniques are attracting attention in recent years in the battery community. In this study, a method is proposed for estimating the battery health and predicting its remaining useful life (RUL) based on the slope of the charge voltage curve. During this process, a Bayesian framework is employed to manage various uncertainties, and a Particle Filter (PF) algorithm is applied to estimate the degradation of the model parameters and to predict the RUL in the form of a probability distribution. Two sets of test data-one from the NASA Ames Research Center and another from our own experiment-for an Li-ion battery are used for illustrating this technique. As a result of the study, it is concluded that the slope can be a good indicator of the battery health and PF is a useful tool for the reliable prediction of RUL.

Application of One-Sided Stress Wave Velocity Measurement Technique to Evaluate Freeze-Thaw Damage in Concrete (콘크리트 동결-융해 손상의 비파죄 평가를 위한 One-Sided 응력파 속도 측정기법의 적용에 관한 연구)

  • Lee, Joon-Hyun;Park, Won-Su
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.269-275
    • /
    • 2000
  • It is well recognized that damage resulting from freeze-thaw cycles is a serious problem causing deterioration and degradation of concrete. In general, freeze-thaw cycles change the microstructure of the concrete ultimately leading to internal stresses and cracking. In this study, a new method for one-sided stress wave velocity measurement has been applied to evaluate freeze-thaw damage in concrete by monitoring the velocity change of longitudinal and surface waves. The freeze-thaw damage was induced in a $400{\times}350{\times}100mm$ concrete specimen in accordance with ASTM C666 using s commercial testing apparatus. A cycle consisted of a variation of the temperature from -14 to 4 degrees Celsius. A cycle takes 4-5 hours with approximately equal times devoted to freezing-thawing. Measurement of longitudinal and surface wave velocities based on one-sided stress wave velocity measurement technique was made every 5 freeze-thaw cycle. The variation of longitudinal and surface wave velocities due to increasing freeze-thaw damage is demonstrated and compared to determine which one is more effective to monitor freeze-thaw cyclic damage progress. The variation in longitudinal wave velocity measured by one-sided technique is also compared with that measured by the conventional through transmission technique.

  • PDF

Evaluation of Nondestructive Evaluation Size Measurement for Integrity Assessment of Axial Outside Diameter Stress Corrosion Cracking in Steam Generator Tubes (증기발생기 전열관 외면 축균열 건전성 평가를 위한 비파괴검사 크기 측정 평가)

  • Joo, Kyung-Mun;Hong, Jun-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy600 HTMA tubes has been increasing. As a result, SGs with Alloy600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and abilty of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.