• 제목/요약/키워드: 열펌프시스템

검색결과 422건 처리시간 0.027초

지역 기후 특성에 따른 지열시스템의 도입경제성 차이에 관한 연구 (Feasibility study of ground source heat pump system according to the local climate condition)

  • 남유진
    • KIEAE Journal
    • /
    • 제14권4호
    • /
    • pp.127-131
    • /
    • 2014
  • The ground source heat pump (GSHP) system is a kind of the temperature differential energy system using relatively stable underground temperature as heat source of space heating and cooling. This system can achieve higher performance of system than it of conventional air source heat pump systems. However, its superiority of the system performance is different according to installation location or local climate, because the system performance depends on the underground condition which is decided by annual average air temperature. In this study, in order to estimate the feasibility of the ground source heat pump system according to the local climate, numerical simulation was conducted using the ground heat transfer model and the surface heat balance model. The case study was conducted in the condition of Seoul, Daejeon, and Busan, In the result, the heat exchange rate of Busan was 34.33 W/m as the largest in heating season and it of Seoul was 40.61 W/m as the largest in cooling.

지열-태양열원 복합시스템의 부하추종특성에 관한 실험 연구 (An Experimental Study on the Load Delivery Characteristics of Hybrid Energy System with Geothermal and Solar Heat Sources)

  • 황인주;우남섭
    • 한국지열·수열에너지학회논문집
    • /
    • 제2권2호
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of the present study is to investigate the load delivery characteristics of a hybrid-renewable energy system with geothermal and solar heat sources for hot water, heating and cooling of a residential house in Korea. The hybrid energy system consists of ground source heat pump of 2 RT for cooling with a 150 m vertical U-bend ground heat exchanger, solar collectors of 4.8 m2 and gas fired backup boiler. The averaged coefficient of performance of geothermal module during cooling and heating seasons are evaluated as about 4.5 and 3.8, respectively.

  • PDF

화학적 열 펌프의 주 반응으로서의 2-propanol 반응 (Dehydrogenation of 2-propanol as a chief reaction for the chemical heat pump)

  • 김태경;여영구;송형근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1085-1090
    • /
    • 1991
  • Chemical heat pump is a system to upgrade the low level energy such as industrial waste heat and solar energy by using coupled endothermic and exothermic chemical reactions. Dehydrogenation of 2-propanol can absorb heat near 80.deg. C and is transformed into acetone and hydrogen. Hydrogenation of acetone can liberate heat near 200.deg. C. Dehydrogenation of 2-propanol is difficult around 80.deg. C because .DELTA.G has positive value, but dehydrogenation reaction in liquid phase can overcome this problem because vaporized acetone and hydrogen can be rapidly eliminated. In this work, dehydrogenation of 2-propanol was investigated in liquid phase with Raney nickel catalyst. The energy efficiency of the chemical heat pump was estimated by computer simulation.

  • PDF

개방형 지열 시스템 설계법 개발을 위한 관정 주위 지중 온도 환경 검토 (Study on the Underground Thermal Environment around Wells for a Design Method of Open-Loop Geothermal System)

  • 배상무;김홍교;김현우;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.14-20
    • /
    • 2017
  • Groundwater heat pump (GWHP) system can achieve higher performance of the system by utilizing heat source of the annual constant groundwater temperature. The performance of GWHP system depends on the ground thermal environment such as groundwater temperature, groundwater flow rate and hydraulic conductivity. In this study, the geothermal environment was analyzed by using numerical simulation for develop the two-well geothermal system. As the result, this paper shows the change of the groundwater level and underground temperature around wells according to the conditions of flow rate and hydraulic conductivity.

건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (2) (A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building)

  • 오오카 료죠;황석호;세키네 켄타로;시마와키 요스케;남유진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.155-160
    • /
    • 2005
  • To purpose of this research is to develop the numerical model for simulating performance of ground heat exchanger with high prediction accuracy. This paper describes the development of a numerical model that simulates the heat transfer between ground and circulation water in ground heat exchanger. Furthermore, we propose the estimating technique of soil properties, such as thermal conductivity, heat capacity and hydraulic conductivity, based on ground investigation. Comparison between experiment and numerical analysis based on the model developed above was conducted under the condition of the experiment in 2004. The result of analysis agreed well with the experimental result.

  • PDF

에탄올 탈수를 위한 투과증발 공정 모사 (Pervaporation process simulation for ethanol dehydration)

  • 이규현;유제강;장재화;안승호
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 춘계 총회 및 학술발표회
    • /
    • pp.38-39
    • /
    • 1995
  • 최근 자동차 대체 연료로 가솔린에 10% 무수에탄올이 혼합된 Gasohol 사용에 관한 관심이 고조되고 있으며, 이는 Gasohol이 자동차 배기 가스중의 일산화탄소 및 탄화수소 함유량을 감소시켜 대기 오염을 줄일 수 있기 때문이다. Gasohol에 사용되는 무수에탄올의 농도는 99.5% 이상이어야 하며, 이러한 고순도의 에탄올을 제조하기 위해서는 물과 에탄올의 공비 혼합물(95.6% 에탄올)로부터 공비증류, 분자체 흡착, 투과증발과 같은 분리 조작을 이용하여 물을 제거하는 공정이 필요하다. 현재 에탄올 탈수에는 공비증류가 많이 사용되고 있으나 공비증류는 에너지 사용량이 많을 뿐더러 유독한 Entrainer를 첨가하기 때문에 투과증발과 같은 저 에너지 소비형, 환경친화적인 공정으로의 전환이 이루어지고 있다. 에탄올 탈수용 투과증발 플랜트는 전세계 20여개가 가동되고 있으며, 상업화된 플랜트의 대부분은 독일의 Deutsche Carbone사가 제조한 PVA/PAN 투과증발 복합막을 사용하고 있다. 투과증발 시스템은 물에 대한 친화도가 높은 투과증발막 및 모듈, 기타 분리 구동력을 높여주기 위한 Heater, 진공펌프, 냉각기, 열 교환기 등의 주변 설비로 구성되며, 투과증발 시스템 개발을 위해서는 우수한 막/모듈 제조와 아울러 최적 공정 설계 기술 개발이 필수적이라 하겠다.

  • PDF

지중열전달특성 평가에 관한 해석 및 실험적 방법에 관한 연구 - 지중 열물성치 및 보어 홀 열 저항 평가 - (Study on Analytical and Empirical Methods for Assessing Geo-Heat Transfer Characteristics)

  • 박준언;백남춘
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.427-432
    • /
    • 2005
  • This study treats the advantage of in situ line source method measuring the heat transfer capacity of a borehole, using mobile equipment, to determine the thermal properties of the entire borehole system such as thermal conductivity, diffusiveity. volumetric heat capacity, and borehole thermal resistance. The results from the response test include not only the thermal properties of the ground and the borehole, but also conditions that are difficult to estimate, e,g. natural convection in the boreholes, asymmetry in the construction, etc. In this study, 1) theoretical in situ methods for assessing working fluid temperature variation in V-type PE tube have been introduced, and 2) TRTE(Thermal Response Test Equipment) has been built based on these kinds of theoretical in situ methods. Basically TRTE consists of a pump, a heater and temperature sensors for measuring the inlet and outlet temperatures of the borehole. In order to make equipment easily transportable it is set up on a small trailer. Since the response test takes above two days to execute, the test was fully automatic in recording measured data using Labview DAS(Data acquisition system) program. The test was demonstrated in the course of intensive research in this field through the one site at Ulsan city in Korea. From this kind of thermal properties test of borehole systems in situ, the design of the borehole system can be optimized regarding the total geological, hydro-geological and technical conditions at the location.

  • PDF

3톤/일 석탄가스화 반응장치의 운전제어 시스템 개발 (Development of Operation Control System for the 3 Ton/Day Bench Scale Gasifier)

  • 김대규;윤용승;장휴정;유진열;홍만화
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 춘계학술발표회 초록집
    • /
    • pp.64-77
    • /
    • 1994
  • 현재 건설중인 3톤/일 규모의 석탄가스화기 운전제어를 위한 콘트롤시스템은 각종 하드웨어와 소프트웨어로 구성된다. 하드웨어는 운전자가 접하게되는 컴퓨터 화면(Operator Console), 운전 제어용 판넬(Hardwired Console), 본 시스템의 핵심인 콘트롤러(PLC; Programmable Logic Controller), 폭발성가스와 분진이 있는 환경하에서의 안전운전을 위한 본질안전 장벽(Intrinsic Safety Barrier) 및 운전정보 수집과 운전 제어를 위한 각종 전/계장품(Field Instrument) 등으로 구성된다. 본 시스템에 포함되는 소프트웨어에는 운전자와 콘트롤러간의 통신을 위한 운전제어화면(GUI;Graphical User Interface), 전체적인 제어를 위한 콘트롤로직(Control Logic)등이있다. 한편 각종 펌프 및 보일러 등 보조설비로의 전기공급을 위한 MCC(Motor Control Center)도 하나의 구성원이 된다. 본 논문은 석탄가스화 반응기의 운전에 관한 전반적인 검토와 콘트롤시스템을 구성하는 각 요소와 각각의 특징 및 그 개발 현황에 대한 검토를 그 내용으로 한다. 본 연구과제를 통해 제작, 설치될 석탄가스화기는 차세대 발전 시스템으로 주목을 받고있는 석탄가스화 복합발전시스템의 핵심부분으로, 본 반응장치의 제어에 관한 경험은 상용 규모의 석탄가스화 반응기에도 유사하게 적용될 것으로 기대된다.

  • PDF

연료전지 자동차용 이산화탄소 열펌프 시스템에서의 냉방 성능에 관한 실험적 연구 (An experimental study on the cooling performance of carbon dioxide heat pump system for fuel cell vehicles)

  • 김성철;박민수;김민수;황인철;노영우;박문수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.378-383
    • /
    • 2005
  • This experimental study presents the results of the cooling performance test of a $CO_2$ heat pump system for fuel cell vehicles. The experimental facility provides the cool ing and heating environment for cabin and heat releasing component. The test loop is designed to target the cooling capacity of 5kW and its coefficient of performance (COP) of 2.2. The cooling performance of the heat pump system is strongly dependent on the refrigerant charge and the degree of superheat. We carried out basic experiments to obtain optimum refrigerant charge and the degree of superheat level at the internal heat exchanger outlet. The heat pump system for fuel cell vehicles is different from that of engine-driven vehicles, where the former has an electricity-driven compressor and the latter has the belt-driven (engine-driven) compressor. In the fuel cell vehicle, the compressor speed is an independent operating parameter and it is controlled to meet the cooling/heating loads. Experiments were carried out at cooling mode with respect to the compressor speed and the incoming outdoor air speed. The results obtained in this study can provide the fundamental cool ing performance data using the $CO_2$ heat pump system for fuel cell vehicles.

  • PDF

연료전지 자동차용 이산화탄소 열펌프 시스템의 성능평가 (Performance Evaluation of a $CO_2$ Heat Pump System for Fuel Cell Vehicles)

  • 김성철;박종철;김민수;원종필
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.37-44
    • /
    • 2008
  • The global warming potential (GWP) of $CO_2$ refrigerant is 1/1300 times lower than that of R134a. Furthermore, the size and weight of the automotive heat pump system can decrease because $CO_2$ operates at high pressure with significantly higher discharge temperature and larger temperature change. The presented $CO_2$ heat pump system was designed for both cooling and heating in fuel cell vehicles. In this study, the performance characteristics of the heat pump system were analyzed for heating, and results for performance were provided for operating conditions when using recovered heat from the stack coolant. The performance of the heat pump system with heater core was compared with that of the conventional heating system with heater core and that of the heat pump system without heater core, and thus the heat pump system with heater core showed the best performance among the selected heating systems. On the other hand, the heating performance of two different types of coolant/air heat pump systems with heater core was compared each other at various coolant inlet temperatures. Furthermore, to use exhausted thermal energy through the radiator, experiments were carried out by changing the arrangement of a radiator and an outdoor evaporator, and quantified the heating effectiveness.