• Title/Summary/Keyword: 열접촉저항

Search Result 13, Processing Time 0.345 seconds

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.

열접촉 저항의 이론적 해석

  • 김철주
    • Journal of the KSME
    • /
    • v.26 no.3
    • /
    • pp.200-203
    • /
    • 1986
  • 본 해설에서는 이론적 해석의 접근방법을 통하여 열접촉 저항의 기본적인 구조를 이해하는데 목적을 두었으며, 여러형태의 이론적 모델중에서 비교적 단순한 Cetinkale & Fishenden 의 연구 결과를 이용하여 이 모델에 포함된 각 인자들을 실제표면에 대해 어떻게 적용하는가를 검토하 였다.

  • PDF

Thermal contact resistance on elastoplastic nanosized contact spots (탄소성접촉면의 나노스케일 열접촉저항)

  • Lee, Sang-Young;Cho, Hyun;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2214-2219
    • /
    • 2008
  • The thermal contact resistance(TCR) of nanosized contact spots has been investigated through a multiscale analysis which considers the resolution of surface topography. A numerical simulation is performed on the finite element model of rough surfaces. Especially, as the contact size decreases below the phonon mean free path, the size dependent thermal conductivity is considered to calculate the TCR. In our earlier model which follows an elastic material, the TCR increases without limits as the number of nanosized contact spots increases in the process of scale variation. However, the elastoplastic contact induces a finite limit of TCR as the scale varies. The results are explained through the plastic behavior of the two contacting models. Furthermore, the effect of air conduction in nanoscale is also investigated.

  • PDF

Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy (주사탐침열파현미경을 이용한 1 차원 나노구조체의 정량적 열전도도 계측기법)

  • Park, Kyung Bae;Chung, Jae Hun;Hwang, Gwang Seok;Jung, Eui Han;Kwon, Oh Myoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.957-962
    • /
    • 2014
  • We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

Simulation Method for Thermal appropriate Desing of Compound Cylinder using Bondgraph Modeling (원통결합부의 열특성 최적설계를 위한 예측 시뮬레이션 방법)

  • 민승환;박기환;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.635-640
    • /
    • 1996
  • A thermo-elastic system in the production machine has highly nonlinear dynamic characteristics. In general, the finite element method is utilized for accurate analysis. However, it requires large computing time. Thus, thermo-elastic systems are usuallymodeled as electric and fluid system using lumped para,eter. In this paper. we propose the bondgraph model and transient simulation methodology of thermo-elastic system in consideration of various boundary and joint contact conditions. Consequently, the proposed method ensures a possibility of its on-line compensation about undesirable phenomena by using real time estimate process and electronic cooling device for thermal appropriate behavior. Thermo-elastic model consisting of bush and shaft including contact condition is presented.

  • PDF

Effect of Thermal Contact Resistance on Transient Thermoelastic Contact for an Elastic Foundation (탄성기반에서 과도 열탄성 접촉에 대한 열 접촉 저항의 영향)

  • Jang Yong-Hoon;Lee Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.833-840
    • /
    • 2006
  • The paper presents a numerical solution to the problem of a hot rigid indenter sliding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed, regardless of the thermal contact resistance. However the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady state, the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient, the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger numbers of small contact areas are established, unlit eventually the accuracy of the algorithm is limited by the discretization used.

Variation of Thermal Contact Resistance for a Corroded Plane Interface of Metals (금속의 평면 접촉면에서 표면부식에 의한 열접촉 저항의 변화)

  • Kim, C.J.;Kim, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.256-262
    • /
    • 1991
  • The corrosion effects on thermal contact resistance were experimentally studied for a given contact interface of a couple of metals. 2 cylindrically shaped test pieces, the one was carbon steel whose surface was machined by lathe and the other was stainless steel, ground, were come into contact under pressure, and then submerged to $HNO_3$ gas environment. While the corrosion process was going on, the thermal contact resistance was measured with time. The experiment was performed for 2 cases; 1) Highly compress the test pieces and then bring them to $HNO_3$ gas environment. 2) Anteriorly corrode the interface under low contact pressure and then increase the contact pressure. The results were as follows; In 1st. case of experiment, the thermal contact resistance seemed to be very stable, and showed low values with a tendancy of small decrease with time. But in 2nd. case the resistance was unstable and jumped to a value of 200-250% more then that expected for uncontaminated interface. More over it demonstrated some increase with time.

  • PDF

A Study on the Temperature Distribution of Materials Due to Electric Upsetting Forming (전기 엎셋팅 가공시의 온도분포에 관한 연구)

  • 왕지석;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 1994
  • The transient temperature distribution of materials during upsetting forming is very important for quality of upsetted workpiece and understanding the thermal characteristics of upsetting is essential for optimum control of the forming. In this paper it is shown that the governing equation of heat transfer for axi-symetric body can be derived from minimizing a functional, and from this theory, formulation of analysis by the finite element method is presented. It is also shown that the thermal contact resistance between two bodies can be represented by equivalent coefficient of heat conductivity. Some examples of calsulated transient temperature distributions by the computer program diveloped from the theory presented in this paper are given in graphic forms. It is proven that the results calculations are very plausible.

  • PDF

A Study on the Thermal Enhancement for a Plane Contact Interfaces of Electronic Systems (전자소자의 평면 접촉계면에 대한 열전도성 향상에 관한 연구)

  • 홍성은;이수영;김철주
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.272-278
    • /
    • 1999
  • In the present study, measurements of thermal contact resistance (TCR) were conducted for joints of brass and aluminium cylinders of 30 mm in diameter, 45 mm in length, when their interfaces were; ⅰ) under vacuum, ⅱ) charged with a pure silicone grease and ⅲ) charged with a mixture of silicone grease and powder of aluminium (#325). Also the data were compared with analytical calculations using Fouche's model. The data of TCR for joints under vacuum state varied in the range of (2∼100)${\times}$10$\^$-5/(㎡$^{\circ}C$/W) depending on their surface roughness. When the contact surfaces were carefully ground, a reduction of 30∼50% in TCR was obtained. But the surface treatment with silicone grease gave rise to a reduction of about 5∼10 times more than that of vacuum state. The analytical prediction by Fouche's model showed a good agreement within 10~30%, for the case of contact surface charged with silicone grease.

  • PDF

Effect of Thermal Contact Resistence on the Heat Transfer Characteristics of Air Flow around the Finned Micro-Channel Tube for MF Evaporator (Micro-Channel형 열교환기에 부착된 핀의 열접촉저항이 열전달 특성에 미치는 영향)

  • Park, Yong-Seok;Sung, Hong-Seok;Sung, Dong-Min;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.121-126
    • /
    • 2021
  • In this study, the effect of thermal contact resistance between pin-channel tubes on the heat transfer characteristics was analytically examined around the channel tubes with the pins attached to two consecutive arranged channel pipes. The numerical results showed that the heat transfer coefficient decreased geometrically as the thermal contact resistance increased, and the corresponding temperature change on the contact surface increased as the thermal contact resistance increased. The thinner the pin, the more pronounced the geometric drop in the heat transfer coefficient. It was confirmed that the higher the height of the pin, the higher was the heat transfer coefficient, however, the greater the size of the thermal contact resistance, the smaller was the heat transfer coefficient. It was found that the temperature change in the inner wall of the channel tube did not significantly affect the heat transfer characteristics owing to the thermal contact resistance. Furthermore, the velocity of air at the entrance of the channel tube was proportional to the heat transfer coefficient due to a decrease in the convective heat resistance corresponding to an increase in the flow rate.