• Title/Summary/Keyword: 열전 달

Search Result 3,740, Processing Time 0.035 seconds

Measuring Convective Heat Transfer Coefficient of Nanofluids Considering Effect of Film Temperature Change over Heated Fine Wire (막온도 변화를 고려한 가는 열선주위 나노유체의 대류열전달계수 측정 실험)

  • Lee, Shinpyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.725-732
    • /
    • 2013
  • This study examined the convective heat transfer characteristics of nanofluids flowing over a heated fine wire. Convective heat transfer coefficients were measured for four different nano-engine-oil samples under three different temperature boundary conditions, i.e., both or either variation of wire and fluid temperature and constant film temperature. Experimental investigations that the increase in the convective heat transfer coefficients of nanofluids in the internal pipe flow often exceeded the increase in thermal conductivity were recently published; however, the current study did not confirm these results. Analyzing the behavior of the convective heat transfer coefficient under various temperature conditions was a useful tool to explain the relation between the thermal conductivity and the boundary layer thickness of nanofluids.

Experimental Study on the Determination of Heat Transfer Coefficient for the KURT (KURT 내 열전달계수 결정에 관한 실험적 연구)

  • Yoon, Chan-Hoon;Kwon, Sang-Ki;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.507-516
    • /
    • 2009
  • In cases of high-level radioactive waste repositories, heat load is apparent by radioactive waste decay. The safety of a waste repository would be influenced by changing circumstances caused by heat transfer through rock. Thus, a ventilation system is necessary to secure the waste repository. The first priority for building an appropriate ventilation system is completing a computer simulation research with thermal rock properties and a heat transfer coefficient. In this study, the heat transfer coefficient in KURT was calculated using the measurement of inner circumstance factors that include dry bulb and wet bulb temperature, rock surface temperature, and barometric pressure. The heater that is 2 m in length and 5 kw in capacity heats the inside of rock in the research module by $90^{\circ}C$. As a result of determining the heat transfer coefficient in the heating section, the changes of heat transfer coefficient were found to be a maximum of 7.9%. The average heat transfer coefficient is approximately 4.533 w/$m^2{\cdot}K$.

A Study on Heat Transfer Characteristics of PCBs with a Carbon CCL (카본 CCL에 의한 PCB의 열전달 특성 연구)

  • Cho, Seunghyun;Jang, Junyoung;Kim, Jeong-Cheol;Kang, Suk Won;Seong, Il;Bae, Kyung Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.37-46
    • /
    • 2015
  • In this paper, the heat transfer characteristics of PCB (Printed Circuit Board) with cabon CCL (Copper Claded Layer) were studied through experiments and numerical analysis to compare of PCBs with conventional the FR-4 core and heavy copper cores. For study, samples are producted with HDI (High Density Interconnection) PCB of mobile phone with variations of thickness of core materials and grades of carbon material to evaluate heat transfer characteristics respectively. From this research results, heat transfer characteristics of the carbon core was rather low than heavy copper, but better than FR-4 core. In addition, even though the carbon and heavy copper core contributed on the heat transfer characteristics as their thickness increases, FR-4 cores disturbed heat transfer characteristics as it's thickness increases. Therefore, carbon core is recommendable to improve the heat transfer characteristics of the PCB because heavy copper core has much disadvantages such as increasing of wear of drill, the weight of PCB, and manufacturing cost by additional insulation materials for electrical insulation.

Heat Transfer Characteristics in the Evaporator of a Soft Ice Cream Maker (소프트 아이스크림 제조기 증발기의 전열 특성)

  • Byun, Ho-Won;Lee, Jin-Wook;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1466-1473
    • /
    • 2012
  • Soft icecream is made by scraping an ice formed on the inside of the cylindrical evaporator, where R-404A is evaporating in the annulus. The heat transfer characteristics of the refrigerant evaporation and those during icecream formation were experimentally investigated. Results show that the refrigerant-side heat transfer coefficients are highly dependent on the location in the evaporator due to the complex annulus configuration. The heat transfer coefficient at the inlet is generally lower than those of other locations. The average heat transfer coefficient increases as heat flux increases or saturation temperature decreases. A correlation is developed to predict the refrigerant-side heat transfer coefficient. The icecream-side heat transfer coefficient oscillates continuously due to the periodic removal of ice formed on the surface. The average heat transfer coefficient during icecream formation is approximately 280 W/$m^2K$, and that during single-phase cooling increased from 150 W/$m^2K$ to 250 W/$m^2K$.

Boiling heat transfer characteristics of FC-72 in parallel micro-channels (병렬 마이크로 채널에서 FC-72의 비등 열전달 특성)

  • Choi, Yong-Seok;Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1032-1038
    • /
    • 2014
  • In this study, an experimental study was performed to understand the boiling heat transfer characteristics of FC-72 in parallel micro-channels. The parallel micro-channels contained channels having a $0.2mm{\times}0.45mm$ [$H{\times}W$] cross section and length of 60 mm. And heat flux was varied from 16.4 to $25.6kW/m^2$ and mass fluxes from 300 to $500kg/m^2s$. The measured heat transfer coefficient was sharply decreased at lower vapor quality and then it was kept approximately constant as the vapor quality is increased. From the experimental results, the boiling heat transfer mechanism of FC-72 was confirmed and the measured heat transfer coefficient was compared and analyzed with the existing correlations to predict the heat transfer coefficient.

Effects of Prandtl Numbers on Heat Transfer of Backward-Facing Step Laminar Flow with a Pulsating Inlet (입구유동 가진이 있는 층류 후향계단 유동에서 열전달에 대한 프란틀수 효과해석)

  • Kim, Won-Hyun;Park, Tae-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.923-930
    • /
    • 2012
  • The wall heat transfer of backward-facing step laminar flows with different Prandtl numbers and a pulsating inlet is investigated by unsteady simulations. The inlet is perturbed by the variation of frequency and amplitude. Temperature-dependent transport properties are adopted. Various characteristics of the wall heat transfer are explained by the variation of the thermal boundary layer. For Pr < 1, the wall heat transfer of temperature-dependent properties is decreased compared to that of constant properties, whereas it increases for Pr < 1. In addition, the wall heat transfer increases depending on the pulsating amplitude. However, the results of frequency variation for St < 0.2 show that the heat transfer is strongly enhanced at a specific frequency. In particular, the increase in the wall heat transfer is strongly related to the root mean square of the fluctuations of the reattachment length.

A study on the temperature distribution characteristics in the tube modules of a heat recovery steam generator ith the change of heat transfer modeling (배열회수 보일러 전열관군에서 열전달 모델링에 따른 온도 분포 특성 연구)

  • Ha, Ji Soo
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • A heat recovery steam generator consists of inlet expansion duct and heat transfer tube bank modules. For the enhancement of heat transfer in the tube bank modules, the flow should be uniform before the 1st heat transfer tube bank module. The present study has been carried out to analyze the flow characteristics in the inlet expansion duct of a heat recovery steam generator by using numerical flow analysis. The aim of the present study is to establish the proper heat transfer mechanism in the heat transfer tube bank modules by the comparison of the heat transfer models, the case with the constant heat loss per unit volume and the case with heat loss by using inner and outer convective heat transfer coefficient of heat transfer tube. From the present research, it could be seen that the heat transfer mechanism with using inner and outer convective heat transfer coefficient derives more proper temperature distribution results and the acceptance criteria of the temperature distribution within ${\pm}10^{\circ}C$ before SCR is satisfied with using this heat transfer mechanism.

Experimental Investigation of Steam Condensation Heat Transfer in the Presence of Noncondensable Gas on a Vertical Tube (수직 튜브 외벽에서의 증기-비응축성 기체 응축 열전달 실험 연구)

  • Lee, Yeon-Gun;Jang, Yeong-Jun;Choi, Dong-Jae;Kim, Sin
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.42-50
    • /
    • 2015
  • To evaluate the heat removal capability of a condenser tube in the PCCS of an advanced nuclear power plant, a steam condensation experiment in the presence of noncondensable gas on a vertical tube is performed. The average heat transfer coefficient is measured on a vertical tube of 40 mm in O.D. and 1.0 m in length. The experiments covers the pressures of 2-4 bar, and the mass fraction of air ranges from 0.1 up to 0.7. From the experimental results, the effects of the total pressure and the concentration of air on the condensation heat transfer coefficient are investigated. The measured data are compared with the predictions by Uchida's and Tagami's correlations, and it is revealed that these models underestimate the condensation heat transfer coefficient of the steam-air mixture.

Effects of Crud on reflood heat transfer in Nuclear Power Plant (핵연료 크러드가 원전 재관수 열전달에 미치는 영향)

  • Yoo, Jin;Kim, Byoung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.554-560
    • /
    • 2021
  • CRUD (chalk river unidentified deposits) is a porous material deposited on the surface of nuclear fuel during nuclear power plant operation. The CRUD is composed of metal oxides, such as iron, nickel, and chromium. It is essential to investigate the effects of the CRUD layer on the wall heat transfer between the nuclear fuel surface and the coolant in the event of a nuclear accident. CRUD only negatively affects the temperature of the nuclear fuel due to heat resistance because the effects of the CRUD layer on two-phase boiling heat transfer are not considered. In this study, the physical property models for the porous CRUD layer were developed and implemented into the SPACE code. The effects of boiling heat transfer models on the peak cladding temperature and quenching were investigated by simulating a reflood experiment. The calculation results showed some positive effects of the CRUD layer.

Study on Efficiency for Underground Heat Transfer of Metal Heat Exchanger (금속재질 열교환기의 지중 열교환 효율에 관한 연구)

  • Song, Jae-Yong;Kim, Ki-Joon;An, Sang-Gon;Kim, Jin-Sung;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.131-148
    • /
    • 2015
  • The purpose of this study is to analyze and compare the heat transfer efficiency of using copper pipe, stainless pipe and traditional PE pipe commonly used for geothermal heat exchanger, with aims at seeking improved methods. In addition, the varying efficiency of heat transfer from ground heat and groundwater heat was assessed and its applicability was discussed. Design parameters for empirical field study were derived by controlling flow rate, velocity and caliber of pipes of the heat exchanger after the thermal efficiency of the heat exchanger material was evaluated. The heat exchange efficiency and effective thermal conductivity were measured with changing pattern through field thermal efficiency and thermal response test. Experimental results show that the metal material showed higher heat transfer efficiency than the PE pipe. Although the heat transfer efficiency was not high with the increase of the pipe diameter in the flow rate, it was high with the increase of the pipe diameter in the velocity.