• Title/Summary/Keyword: 열전선

Search Result 204, Processing Time 0.027 seconds

Heat Transfer Analysis for Micro Gas Sensor (마이크로 가스센서의 열전달 해석)

  • 주영철;이창훈;김창교
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.119-121
    • /
    • 2003
  • 마이크로 가스센서를 개발하기 위하여 가장 핵심적인 부품인 마이크로 핫플레이트에 대한 열전달을 해석하였다. 상용 열유동 해석 전용 프로그램인 FUENT를 이용하여 발열부와 주위의 실리콘 기판의 온도분포를 구하였다. 발열부에서는 전기저항에 의해서 일정한 양의 열이 균일하게 발생한다고 가정하고 그 열이 실리콘 기판의 끝을 통하여 빠져나간다고 가정하여 정상상태의 온도분포를 구하였다. 해석한 온도분포를 이용하여 균일한 온도분포를 얻을 수 있도록 발열선의 배치를 변화시켜가며 마이크로 핫플레이트의 설계를 완성하였다.

  • PDF

금속선을 삽입한 Nitramine계 추진제의 연소특성

  • 유지창;박영규;현형수;김인철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.31-31
    • /
    • 1999
  • 로켓 모터 내에서 높은 충전률을 유지하면서 연소면적을 증대시켜 추력기체 생성량을 증대시키는 가장 효율적인 방법으로는 금속선, 필라맨트, strip, rod 등의 열전도체와 hollow fiber를 단면연소 그레인에 삽입시키는 방법이 있다. 이러한 연구는 1950년대 ARC의 Rumbel에 의해 PVC와 AP가 주성분인 혼합형 추진제를 대상으로 처음 시도되었으며, Kubota, Caveny, Gossant, King등에 의해 복기추진제와 혼합형 추진제를 대상으로 금속선의 종류, 직경, 형태, 수 및 기하학적 배열 등에 따른 실험적 이론적 연구가 이루어져 왔다.

  • PDF

Stretchable Characteristics and Power Generation Properties of a Stretchable Thermoelectric Module Filled with PDMS (PDMS로 충진된 신축열전모듈의 신축특성과 발전특성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.149-156
    • /
    • 2019
  • A stretchable thermoelectric module consisting of 5 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs was processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its stretchable characteristics and power generation properties were measured. The integrity of the module was kept well even after 10 strain cycles ranging from 0 to 0.1. With increasing the tensile strain to 0.2, the module circuitry became open because of joint failure between Cu electrodes and thermoelectric legs. The stretchable thermoelectric module exhibited an open circuit voltage of 4.6 mV with a temperature difference of 2.2K across both ends of thermoelectric legs, and changes in its open circuit voltage were below 5% for tensile strains of 0~0.1. Being elongated for a strain of 0.1, it exhibited the maximum output power of 18.5 ㎼ with the temperature difference of 2.2K across its both ends.

Design of Soft X-ray Tube and Simulation of Electron Beam by Using an Electromagnetic Finite Element Method for Elimination of Static Electric Field (전자기 유한요소법 전자빔 시뮬레이션을 이용한 정전기장 제거용 연한 X-선관 설계 특성 연구)

  • Park, Tae-Young;Lee, Sang-Suk;Park, Rae-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.66-69
    • /
    • 2014
  • The spreading tube of X-ray cathode tube displayed with an electromagnetic finite element method was designed. To analyze a feature design and the concrete coordinate performance of soft X-ray tube modeling, the orbit of electron beam was simulated by OPERA-3D SW program. The fixed conditions were the applied voltage, the temperature, the work function of thermal electron between cathode and anode of tungsten. Through the analysis of distribution of electron beam and the variation of dividing region, the design of soft X-ray spreading tube equipped with two cross filaments was optimized.

Direct Determination of Spectral Phonon-Surface Scattering Rate from Experimental Data on Spectral Phonon Mean Free Path Distribution (실험적 포논 평균자유행로 스펙트럼 분포를 이용한 포논 스펙트럼 포논-표면 산란율 모델)

  • Jin, Jae Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.621-627
    • /
    • 2016
  • In this study, we present a model that can be used to calculate the phonon-surface scattering rate directly from the experimental data on phonon mean free path (MFP) spectra of nanostructures. Using this model and the recently reported length-dependent thermal conductivity measurements on $Si_{0.9}Ge_{0.1}$ nanowires (NWs), we investigate the spectral reduced MFP distribution and the spectral phonon-surface scattering rate in the $Si_{0.9}Ge_{0.1}$ NWs. From the results, it is found that the phonon transport properties with the material and the phonon frequency dependency of the spectral phonon-surface scattering rate per unit length of the NW. The model presented in this study can be used for developing heat transfer analysis models of nanomaterials, and for determining the optimum design for tailoring the heat transfer characteristics of nanomaterials for future applications of phonon nanoengineering.

Natural Convection Heat Transfer with a Rectangular Obstruction in a square Enclosure (직사각형 전도성 장애물을 갖는 밀폐공간내에서의 자연대류)

  • Choo, H.L.;Kim, B.H.;Kim, H.W.;Jang, C.S.
    • Solar Energy
    • /
    • v.18 no.2
    • /
    • pp.123-135
    • /
    • 1998
  • The effect of the thermal conductivity of a centered, square, heat-conducting body on natural convection In a square enclosure was examined numerically. Numerical simulations was carried out for Pr=0.17, $Ra=1.0{\times}10^4,\;1.0{\times}10^5,\;1.0{\times}10^6$, $K^*$=1.0, 6.6, 34.0 and t=0.5, 1.0, 2.0. The results were reported in terms of streamlines, isotherms, Nusselt number. As the results, the mean Nusselt number increases with the increasing of ${\zeta}$ at a constant Ra and $K^*$. In the case of ${\zeta}=1.0$(obstruction shape ratio), the mean Nusselt numbers were decreased as increasing of $K^*$(obstruction thermal conductivity ratio) with regardless of the Rayleigh number. When the constant obstruction size and thermal conductivity ratio, convective heat transfer effect was more enhanced at ${\zeta}=2.0$ than ${\zeta}=0.5$.

  • PDF

An experimental study on the thermal entrance lengths for viscoelastic polymer solutions in turbulent tube flow (점탄성 특성을 가진 폴리머용액의 난류유동 열적입구길이에 관한 실험적 연구)

  • 유상신;황태성;엄정섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1189-1196
    • /
    • 1988
  • Thermal entrance lengths of turbulent tube flow for viscoelastic polymer solutions are investigated experimentally in the recirculating flow system with tubes of inside diameters 8.5mm(L/D=710) and 10.3mm(L/D=1158), respectively. In the present system, the hydrodynamic and thermal boundary layers develop simultaneously from the beginning of the test section. To provide the boundary condition of constant heat flux at the wall, the test tubes are heated directly by electricity. The polymer solution used in the current study is 1000 wppm aqueous solution of polyacrylamide(Separan AP-273). The apparent viscosity of the polymer solutions circulating in the flow system are measured by the capillary tube viscometer at regular time intervals. Thermal entrance lengths vary due to the rate of degradation. The entrance lengths of degraded polymer solutions are about 500~600 times the diameter. However, the entrance lengths of fresh polymer solutions are greater than the lengths of the test tubes used in this study suggesting that thermal entrance lengths for viscoelastic polymer solutions are greater than 1100 tube times the diameters. Friction factor is almost insensitive to the degradation, but the heat transfer $j_{H}$-factor is affected seriously by degradation. Based on the present experimental data of fresh solutions a correlation for the heat transfer $j_{H}$-factor is presented.ted.

Numerical Discussion on Natural Convection in Soils (지반내 자연대류에 대한 수치해석적 논의)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.35-47
    • /
    • 2017
  • Thermal behavior of soils is mainly focused on thermal conduction, and the study of natural convection is very limited. Increase of soil temperature causes natural convection due to buoyancy from density change of pore water. The limitations of the analysis using fluid dynamics for natural convection in the porous media is discussed and a new numerical analysis is presented for natural convection in porous media using THM governing equations fully coupled in the macroscopic view. Numerical experiments for thermal probe show increase in the uncertainty of thermal conductivity estimated without considering natural convection, and suggest appropriate experimental procedures to minimize errors between analytical model and numerical results. Burial of submarine power cable should not exceed the temperature changes of $2^{\circ}C$ at the depth of 0.2 m under the seabed, but numerical analysis for high permeable ground exceeds this criterion. Temperature and THM properties of the seafloor are important design factors for the burial of power cable, and in this case effects of natural convection should be considered. Especially, in the presence of heat sources in soils with high permeability, natural convection due to the variation of density of pore water should be considered as an important heat transfer mechanism.

Performances of Prepacked-Type Thermal Conductive Backfills Incorporating Byproduct Powders and Aggregates (부산물 분체 및 굵은 골재를 활용한 프리팩트형 열전도성 되메움재의 성능)

  • Sang-Min Jeon;Young-Sang Kim;Ba-Huu Dinh;Jin-Gyu Han;Yong-Sun Ryu;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • This study aims to develop a thermally conductive backfill by applying the prepacked concrete concept, in which a coarse aggregate with relatively high thermal conductivity was first filled and then the voild filled with grout. Backfill with improved thermal conductivity can increase the heat exchange efficiency of underground heat exchangers or underground transmission facilities. The backfills was prepared by using crushed concrete as the coarse aggregate, fly ash-based grout, and a small amount of cement for solidification. The results of this study showed that the fly ash-cement-sand-based grout with a flow of at least 450 mm accor ding to ASTM D 6103 could fill the void of pr epactked coar se aggr egates with a maximum size of 25 mm. The thermal conductivity of the backfil with coarse aggregate was over 1.7 W/m·K, which was higher than that of grout-type backfills.