Browse > Article
http://dx.doi.org/10.7734/COSEIK.2012.25.4.301

Analysis on Thermomechanical Response to Tensile Deformation of GaN Nanowires  

Jung, Kwangsub (서울대학교 기계항공공학부)
Zhou, Min (서울대학교 기계항공공학부)
Cho, Maenghyo (서울대학교 기계항공공학부)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.25, no.4, 2012 , pp. 301-305 More about this Journal
Abstract
In this work the mechanical behaviors of GaN nanowires are analyzed during tension, compression, and unloading deformations. The thermal conductivity of the nanowires at each deformed state is evaluated using an equilibrium Green-Kubo approach. Under tensile loading, the [0001]-oriented nanowires with hexagonal cross-sections undergo a phase transformation from wurtzite to a tetragonal structure. The phase transformation is not observed under compressive loading. The thermal conductivity decreases on going from compressive strains to tensile strains. The strain dependence of the thermal conductivity results from the relaxation time of phonon. A reverse transformation from the tetragonal structure to the wurtzite structure is observed during unloading. The thermal conductivities in the intermediate states are lower than the conductivity in the wurtzite structure at same strain. Such differences in the thermal conductivity between different atomic structures are mainly due to changes in the group velocity of phonon.
Keywords
GaN nanowire; molecular dynamics; thermal conductivity; phase transformation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 김원배, 조맹효 (2009) 나노박막의 표면응력에 의한 평형상태에 대한 연구, 한국전산구조공학회 논문집, 22(4), pp.331-334.
2 Bhowmick, S., Shenoy, V.B. (2006) Effect of Strain on the Thermal Conductivity of Solids, Journal of Chemical Physics, 125, p.164513.   DOI
3 Fennell, C.J., Gezelter, J.D. (2006) Is the Ewald Summation Still Necessary? Pairwise Alternatives to the Accepted Standard for Long-Range Electrostatics, Journal of Chemical Physics, 124, p.234104.   DOI
4 Hoover, W.G. (1985) Canonical dynamics: Equilibrium phase-space distribution, Physical Review A, 31, p.1695.   DOI
5 Jung, K., Cho, M., Zhou, M. (2011) Strain Dependence of Thermal Conductivity of [0001]-Oriented GaN Nanowires, Applied Physics Letters, 98, p.041909.   DOI
6 Kulkarni, A.J., Zhou, M. (2007) Tunable Thermal Response of ZnO Nanowires, Nanotechnology, 18, p.435706.   DOI
7 Kulkarni, A.J., Zhou, M., Sarasamak, K., Limpijumnong, S. (2006) Novel Phase Transformation in ZnO Nanowires Under Tensile Loading, Physical Review Letter, 97, p.105502.   DOI
8 Lee, Y.H., Biswas, R., Soukoulis, C.M., Wang, C.Z., Chan, C.T., Ho, K.M. (1991) Moleculardynamics Simulation of Thermal Conductivity in Amorphous Silicon, Physical Review B, 43, pp.6573 -6580.   DOI
9 Plimpton, S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, 117, pp.1-19.   DOI
10 Roufosse, L.T., Jeanloz, R. (1983) Thermal Conductivity of Minerals at High Pressure: the Effect of Phase Transition, Journal of Geophysical Research, 88, p.7399.   DOI
11 Volz, S.G., Chen, G. (2000) Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals, Physical Review B, 61, pp.2651-2656.   DOI
12 Wang, J., Kulkarni, A.J., Ke, F.J., Bai, Y.L., Zhou, M. (2007) Novel Mechanical Behavior of ZnO Nanorods, Computer Methods in Applied Mechanics and Engineering, 197, pp.3182-3189.
13 Wang, J., Kulkarni, A.J., Sarasamak, K., Limpijumnong, S., Ke, F.J., Zhou, M. (2007) Molecular Dynamics and Density Functional Studies of a BoDy-Centered-Tetragonal Polymorph of ZnO, Physical Review B, 76, p.172103.   DOI
14 Wang, Z.L., Song, J.H. (2006) Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Array, Science, 312, pp.102-105.
15 Wolf, D., Keblinski, P., Phillpot, S.R., Eggebrecht, J. (1999) Exact Method for the Simulation of Coulombic Systems by Spherically Truncated, Pairwise r-1 Summation, Journal of Chemical Physics, 124, p.234104.
16 Xiao, P., Wang, W., Wang, J., Ke, F., Zhou, M., Bay, Y. (2009) Surface Transformation and Inversion Domain Boundaries in Gallium Nitride Nanorods, Applied Physics Letters, 95, p.211907.   DOI
17 Zapol, P., Pandey, R., Gale, J.D. (1997) An Interatomic Potential Study of the Properties of Gallium Nitride, Journal of Physics: Condensed Matter, 9, p.9517.   DOI
18 Zhou, F., Moore, A.L., Bolinsson, J., Persson, A., Fröberg, L., Pettes, M.T., Kong, H., Rabenberg, L., Caroff, P., Stewart, D.A., Mingo, N., Dick, K.A., Samuelson, L., Linke, H., Shi, L. (2011) Thermal Conductivity of Indium Arsenide Nanowires with Wurtzite and Zinc Blende Phases, Physical Review B, 83, p.205416.   DOI