• Title/Summary/Keyword: 열전도도 해석

Search Result 214, Processing Time 0.026 seconds

Numerical Analysis about Natural Convection of Water in the Ice-on-coil as a Static Ice Making Type (정적제빙형인 관외 제빙기내에서의 물의 자연대류현상에 대한 수치해석적 연구)

  • Yu, Jik-Su;Kim, Myoung-Jun;Kim, Sung-Yong;Jang, Hyeon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.323-323
    • /
    • 2011
  • 본 연구는 냉각점이 중간에 위치하는 정적제빙형인 관외 제빙기내에서의 물의 자연대류 현상에 대해 수치적으로 다루고 있다. 자연대류현상과 열전도에 의해 조절되는 물에 이동을 유한차분법을 이용해 2차원적으로 계산하였다. 또한, 본 연구에서는 물의 온도가 4[$^{\circ}C$]에서 밀도역전현상이 일어나는 것을 수치해석의 결과와 비교한다. 자연대류의 변화에 따른 결과는 수치해석을 통해 등온선과 유선형의 그래프로부터 알 수 있었다. 그 중에서도 물의 온도와 밀도의 관계에 따라 자연대류의 변화가 일어나는 것을 수치해석을 통해 알 수 있었다.

  • PDF

Thermodynamic Energy Balance Analysis of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동의 열역학적 에너지수지 분석)

  • Kim, Hyung-Mok;Park, Do-Hyun;Ryu, Dong-Woo;Choi, Byung-Hee;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.297-306
    • /
    • 2011
  • In this paper, we performed thermodynamic energy balance analysis of the underground lined rock cavern for compressed air energy storage (CAES) using the results of multi-phase heat flow analysis to simulate complex groundwater-compressed air flow around the cavern as well as heat transfer to concrete linings and surrounding rock mass. Our energy balance analysis demonstrated that the energy loss for a daily compression and decompression cycle predominantly depends on the energy loss by heat conduction to the concrete linings and surrounding rock mass for a sufficiently air-tight system with low permeability of the concrete linings. Overall energy efficiency of the underground lined rock caverns for CAES was sensitive to air injection temperature, and the energy loss by heat conduction can be minimized by keeping the air injection temperature closer to the ambient temperature of the surroundings. In such a case, almost all the heat loss during compression phase was gained back in a subsequent decompression phase. Meanwhile, the influence of heat conductivity of the concrete linings to energy efficiency was negligible.

Thermal Analysis of Satellite Panel Using Carbon Composites (탄소복합재를 이용한 위성 패널의 열해석)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Park, Jong-Seok;Park, Kun-Joo
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.114-120
    • /
    • 2011
  • Thermal control of satellite is mainly based on passive ways, such as the radiator made of aluminum honeycomb core with aluminum skins and OSR (Optical Solar Reflector). Additionally, for the thermal control of high dissipation unit, the aluminum doubler and heat pipe are utilized. Recently, efforts to find advanced thermal materials have been carried out to enhance heat rejection capability without increasing satellite size, weight and cost. This paper handles the carbon composites have high thermal conductivity with light weigh and have been considered as future thermal control materials to replace aluminum based radiator and doubler. Thermal analysis of satellite panel using APG(Annealed Pyrolytic Graphite) and carbon-carbon composites were performed and temperature contours were compared with the conventional thermal control methods.

Study on Analysis Technique Comparison and Evaluation of High Thermal Conductivity Concrete with Magnetite Aggregates and Steel Powder (자철광 및 철분말을 혼입한 고열전도 콘크리트의 열전도 평가 및 해석기법 비교에 대한 연구)

  • Lee, Hack-Soo;Kim, Min-Kyu;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.315-321
    • /
    • 2014
  • Concrete as a construction material is widely used in nuclear vessel and plant for excellent radiation shielding. However the isolation characteristics in concrete may affect adversely in the case of fire and melt-down in nuclear vessel since temperature cooling down is very difficult from outside. This study is for development of high thermal conductive concrete, and its mechanical and thermal properties are evaluated. Magnetite aggregates with volume ratio of 42.3% (maximum) and steel powder of 1.5% are replaced with normal aggregates and thermal properties are evaluated. Thermal conductivity little increases by 30% addition of magnetite but rapidly increases afterwards. Finally thermal conductivity is magnified to 2.5 times in the case of 42.3% addition of magnetite. Steel powder has a positive effect on high thermal conduction to 106~113%. Several models for thermal conduction like ACI, DEMM, and MEM are compared with test results and they are verified to reasonably predict the thermal conductivity with increasing addition of magnetite aggregates and steel powder.

Flow analysis of non-isothermal three dimensional filling phase in injection molding and its application (사출성형에서의 비등온, 3차원 유동해서과 그 응용)

  • 김대업;정근섭;이귀영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 1993
  • 사출성형 문제는 열전달과 유체유동이 복합된 문제라고 할수 있다. 사출성형 공정은 충진(filling), 보압(packing) 및 냉각과정(cooling phase)으로 이루어 진다. 충진과정은 높은 점성의 Non-Newtonian유체가 몰드내의 캐버티로 사출됨으로써 이루어지며 플라스틱의 점성도는 플라스틱의 온도 및 유동속도와 관련이 크며 이 flow-rate는 점도와 더불어 변화한다. CAE 유동해석 프로그램은 유체의 흐름과 열전달을 이용하여 충진과정을 이해하는데 이용되고 있다. 본 고에서는 사출성형 과정 중 충진과정에 대한 컴퓨터 시뮬레이션과 그 적용사례에 대하여 살펴본다.

  • PDF

Analysis of Thermal Loading of a Large LPG Engine Piston Using the Inverse Heat Conduction Method (열전도의 역문제 방법을 이용한 대형 LPG 엔진 피스톤의 열부하 해석)

  • Park Chul-Woo;Lee Boo-Youn
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.820-827
    • /
    • 2006
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed.

  • PDF

Evaluation of Ground Thermal Conductivity by Performing In-Situ Thermal Response test (TRT) and CFD Back-Analysis (현장 열응답 시험(TRT)과 CFD 역해석을 통한 지반의 열전도도 평가)

  • Park, Moonseo;Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.5-15
    • /
    • 2012
  • In this study, a series of CFD (Computational Fluid Dynamics) numerical analyses were performed in order to evaluate the thermal performance of six full-scale closed-loop vertical ground heat exchangers constructed in a test bed located in Wonju. The circulation HDPE pipe, borehole and surrounding ground formation were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow fluid and the variation of the surrounding ground temperature with depth were adopted in the FLUENT model. The relevant thermal properties of materials measured in laboratory were used in the numerical analyses to compare the thermal efficiency of various types of the heat exchangers installed in the test bed. The simulation results provide a verification for the in-situ thermal response test (TRT) data. The CFD numerical back-analysis with the ground thermal conductivity of 4 W/mK yielded better agreement with the in-situ thermal response tests than with the ground thermal conductivity of 3 W/mK.

Thermal Transfer Analysis of Micro Flow Sensor using by Markov Chain MCM (Markov 연쇄 MCM을 이용한 마이크로 흐름센서 열전달 해석)

  • Cha, Kyung-Hwan;Kim, Tae-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2253-2258
    • /
    • 2008
  • To design micro flow sensor varying depending on temperature of driving heater in the detector of Oxide semiconductor, Markov chain MCM(MCMCM), which is a kind of stochastic and microscopic method, was introduced. The formulation for the thermal transfer equation based on the FDM to obtain the MCMCM solution was performed and investigated, in steady state case. MCMCM simulation was successfully applied, so that its application can be expanded to a three-dimensional model with inhomogeneous material and complicated boundary.

KSC-28 사용후핵연료 수송용기의 열해석 평가

  • 이주찬;방경식;민덕기;도재범;노성기
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.268-273
    • /
    • 1997
  • 사용후핵연료는 장기간 강한 방사선과 붕괴열이 방출된다. 따라서 사용후핵연료를 안전하게 운반하기 위하여 수송용기는 방사선차폐의 건전성, 격납경계의 유지 및 내부 붕괴열의 적절한 제거 등의 설계기준을 만족하도록 설계되어야 한다. 본 연구에서는 28개의 PWR 사용후핵연료집합체를 운반할 수 있는 KSC-28 수송용기의 적절한 열전달 특성을 갖는 copper 냉각핀 및 aluminum 전열판을 설정하였다. 또한, 정상수송조건 및 화재사고조건에 대한 열전달해석을 수행하여 수송용기의 열적 건전성을 평가하였고 여기에서 얻어진 온도를 열하중으로 고려하여 열응력해석을 수행함으로써 수송용기의 온도변화에 따른 구조적 건전성을 평가하였다.

  • PDF

Development of 3D printer heating block using clad plate material (클래드 판재를 사용한 3D 프린터 히팅 블록 개발)

  • Won, Dae-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.199-205
    • /
    • 2017
  • In this study, the design analysis and the explosion welding were made into a clad sheet by the convergence method in order to solve the problem of heat transfer to the guide due to the heating of the 3D printer heating block. The shear strength of the clad plate material was tested and the results were analyzed by thermal analysis, thermal conductivity and thermal imaging. The following conclusions were obtained. 3D modeling of the heating block made of copper and titanium clad plate material The thermal analysis showed that the surface temperature of the filament guide area was lower than the heating block surface temperature. The average shear strength of copper and titanium clad plate material was measured and the average value of 195.6MPa was obtained. The thermal conductivity of the heating block made of copper and titanium clad plate material was measured three times and the average value was $62.52W/m{\cdot}K$. The surface temperature of the heating block made of copper and titanium clad plate material was measured by a thermal imaging camera at a maximum of $107.3^{\circ}C$ and $183.2^{\circ}C$ at the filament guide. The temperature distribution was $89^{\circ}C$ lower than that of the existing filament.